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Highlights
Causal inferences require causal as-
sumptions. To formalize the assump-
tions required to draw causal inferences
from experimental data, scholars have
leveraged insights about causal infer-
ence in observational settings.

Even carefully designed experiments
may face challenges in satisfying four im-
portant causal assumptions. Ecologists
sometimes acknowledge and address
these challenges but do not have a co-
hesive framework for understanding
them.
Causal inferences from experimental data are often justified based on treatment
randomization. However, inferring causality from data also requires complemen-
tary causal assumptions, which have been formalized by scholars of causality
but not widely discussed in ecology. While ecologists have recognized chal-
lenges to inferring causal relationships in experiments and developed solutions,
they lack a general framework to identify and address them. We review four as-
sumptions required to infer causality from experiments and provide design-
based and statistically based solutions for when these assumptions are violated.
We conclude that there is no clear demarcation between experimental and non-
experimental designs. This insight can help ecologists design better experiments
and remove barriers between experimental and observational scholarship in
ecology.
When the validity of a causal assumption
is questionable, ecologists can apply de-
sign-based and statistically based solu-
tions.

Despite popular wisdom, no clear de-
marcation exists between experimental
and non-experimental designs. When in-
ferring causal relationships fromdata, ex-
perimentalists need to be just as careful
as non-experimentalists in assessing
the validity of their assumptions.
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Experimentation in ecology
Experiments are the primary tool in ecology for quantifying causal relationships. Causal inference
is facilitated by the experimenter’s control over variation in the causal variable [i.e., the treatment
(see Glossary)]. This control ensures that the cause precedes the effect and allows the experi-
menter to assume that the source of variation in the cause is not systematically related to variation
in outcome, as it might be in observational designs.

Given the importance of experiments in ecology, ecologists have written extensively about exper-
imental designs and analyses (e.g., [1–4]), including, for example, how replication and
pseudoreplication can impact inferences (e.g., [5–8]) and how experimental treatments may not
align with actual ecological phenomena (e.g., [9]). Further, ecologists widely acknowledge that
experimental results may not generalize from one site to another, a limitation they have sought
to overcome through widely distributed experimental networks (e.g., [10,11]).

Ecologists have paid less attention to the core assumptions required to infer causal relationships
from correlations in experiments. Experimental data never ‘speak’ by themselves [12]. Only the
combination of data and assumptions allows ecologists to infer causality from experimental
data. Violations of these causal assumptions have important implications for what we can learn
from an experiment. Given the complex realities of conducting experiments, most researchers
are unlikely to implement the ideal experiment in which none of the core causal assumptions
is violated.

Formalizing causality in ecology
Scholars who studied causality for decades have formalized core assumptions for inferring cau-
sality and developed solutions for the myriad contexts in which the assumptions may be violated
[12–18]. These insights, however, have not been widely discussed in experimental ecology,
where causal inferences are often not questioned (see [19–21] for discussions in observational
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Glossary
Average treatment effect (ATE): the
expected change in a randomly selected
unit from the target population when the
unit moves from one treatment condition
to another; that is, how the outcome
would change, on average, if all units
moved from one treatment condition to
another.
Causal effect: a comparison of the
potential outcomes under two values of
a treatment.
Compliers: units that receive a specific
value of a treatment when assigned that
value and not otherwise (the units ‘com-
ply’ with their treatment assignment).
Control: a term that can describe the
absence of treatment (untreated) or can
describe a baseline condition (e.g., spe-
cies richness = 1).
Counterfactual outcome: the out-
come that a unit would have experi-
enced if the unit had received a different
treatment (i.e., ‘contrary to fact’).
Excludability: outcomes respond
solely to a treatment itself and not to
another causal pathway that is set in
motion by the assignment of a treat-
ment.
Falsification tests: statistical tests that
leverage theory to provide evidence that
core causal assumptions may be invalid.
Ideal experiment: an experiment
whose design does not violate core
causal assumptions described in this
review.
Interference: when the potential out-
comes of one experimental unit
depends not only on its own treatment
status but also on the treatment status
of other units; in other words, when the
treatment status of one unit affects the
outcomes of other units. ‘No interfer-
ence’ is one part of what statisticians call
the ‘stable unit treatment value assump-
tion’ (SUTVA).
Internal validity: in a particular context,
the degree to which the evidence sup-
ports a causal claim (i.e., the degree to
which rival, noncausal explanations can
be eliminated).
Measurement error: error in the mea-
surement of outcomes or treatment sta-
tus.
Multiple versions of treatment: each
treatment condition has more than one
version and thus each unit may have
more than one potential outcome per
treatment condition. ‘No multiple ver-
sions of treatment’ (a.k.a. ‘no hidden
treatments’) is one part of what statisti-
cians call the SUTVA.
ecology). Without a deeper understanding of the core assumptions that make causal inferences
from experiments possible, the causal conclusions ecologists draw from experiments may be er-
roneous.

Here, we describe the core causal assumptions and describe solutions that are available when
one or more assumptions are violated. Our goal is to help researchers make the most of their ex-
perimental data and better evaluate the credibility of causal inferences in experimental studies.

Causality and potential outcomes perspective
Ecologists are familiar with good experimental design practices like randomizing treatments and
having multiple replicates. However, even well-designed experiments rely on assumptions that,
when left unexamined, can lead to inaccurate estimates of the causal effect of interest. Before
exploring these assumptions, we introduce terms and concepts of causality using the potential
outcomes perspective (the Neyman–Rubin Causal Model) [18,22,23]. We illustrate this perspec-
tive and its notation through a hypothetical example of using exclosures to remove herbivores.

Say we are interested in the causal effect of eliminating herbivores on species richness on the ith
plot (Figure 1). In this example, the causal variable can take only two values: a herbivory control
(Ti = 0, where T corresponds to the treatment) or a no-herbivory treatment that uses a herbivore
exclosure (Ti = 1). When the plot is a control, its species richness outcome is Yi(0). When the same
plot is treated, its outcome is Yi(1). Yi(1) and Yi(0) are called potential outcomes because both are
potentially observable. The difference between these potential outcomes is the plot-level causal
effect of eliminating herbivory.

In other words, a causal effect is defined as the difference in outcomes between two states of the
world. The challenge is that, in practice, only one of these outcomes can be observed at a point in
space and time. We can only observe Yi(1) on a treated study unit and Yi(0) on a control study
unit. The unobserved outcome for the study unit is a counterfactual outcome. Our inability to
observe the same study unit under both treated and control conditions is the Fundamental Prob-
lem of Causal Inference [17,18,24] and implies that we cannot estimate unit-level treatment ef-
fects.

Although we cannot estimate a treatment effect for each study unit, we can estimate an average
treatment effect (ATE) across study units. When treatment assignment is randomized, the
treated and control units do not systematically differ. Thus, they have the same expected potential
outcomes. We can then assume that the expected Yi(0) on control units is equal to the expected
unobserved (counterfactual) Yi(0) on treated units, and the expected Yi(1) on treated units repre-
sents the counterfactual expected Yi(1) on control units. With treatment randomization in the her-
bivory experiment (Figure 1), we can estimate the expected value of Yi(1) for all plots using the
average outcome in the treated plots and the expected value of Yi(0) for all plots using the average
outcome in the control units. Therefore, randomization allows one to use the observable data
from the experiment to estimate the ATE across all units:

1
N
∑Ni¼1 Y i 1ð Þ½ �− 1

N
∑Ni¼1 Y i 0ð Þ½ �: ½1�

With random assignment of the treatment, we can estimate, without statistical bias, the aver-
age causal effect simply by taking the difference in observed outcomes between the treatment
and control units (Equation 1).
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Noncompliance: when some units do
not receive their assigned treatment.
Partial identification: a statistical
approach to test how sensitive a causal
claim is to causal assumptions; the
approach yields estimated bounds on
the causal effect rather than a point esti-
mate.
Potential outcome: the value of a
unit’s outcome under a particular value
of a treatment.
Rival pathway: an alternative, non-
causal pathway that connects a treat-
ment and outcome.
Statistical bias: a systematic differ-
ence between the true value of a causal
effect and the results from an estimation
procedure. In contrast to sampling vari-
ability, bias does not decline with more
data.
Treatment: synonym for ‘cause’ or
‘causal variable’; often thought of as
binary (e.g., treatment and control) but
can be multivalued (e.g., species rich-
ness can be 1, 2, 3,…); can be thought
of as an intervention or a manipulation of
an attribute of a system.
Unit: the animal, plant, place, or thing
that is exposed to a treatment at a par-
ticular time. Note that a single animal,
plant, place, or thing at two different
times comprises two different units.
Core assumptions in causal inference
Randomization alone does not guarantee that we can estimate an accurate casual effect from
Equation 1. To estimate an average causal effect without bias requires that the experimental de-
sign also satisfies four core assumptions (Figure 2): excludability, no interference, nomultiple
versions of treatments, and no noncompliance. However, even the most carefully planned
experiments may violate one or more of these assumptions because of logistical constraints or
unforeseen field or laboratory conditions. Here, we describe the four assumptions and explore
how they may be violated in ecological experiments (see Boxes 1 and 2 for more examples).
We then provide solutions to avoid these violations and address them when they occur (Table 1).

Excludability: potential violations
To infer a causal effect from data generated in a randomized experiment, one must assume that
excludability is satisfied, meaning that the process by which treatments are assigned has no effect
on potential outcomes except through its effect on a unit’s treatment status [15].With this assump-
tion, we can justify excluding the treatment assignmentmethodwhen calculating the ATE (Equation
1). However, ecological processes cannot be directly changed. Instead, experimentalists manipu-
late ecological processes through laboratory or field interventions. For example, experimenters
cannot directly change precipitation but instead rely on methods like shelters (Figure 2A).
Treatment assignment methods like shelters are therefore part of the causal pathway being stud-
ied. We generally ignore their role because we assume that there is no connection between the
method and the outcome except through the treatment itself (i.e., no red line in Figure 2A).
However, shelters may change other aspects of the ecosystem that impact the outcome of interest.

If this assumption is violated, researchers cannot rule out rival explanations for the data patterns
they observe. For example, in many biodiversity experiments that quantify the effect of species
richness on productivity, researchers maintain the original richness treatment by weeding out
species that enter the plot. Weeding intensity is likely to be correlated with the diversity treatment
because plots with higher diversity tend to have fewer invaders than lower-diversity plots [25,26].
Weeding may increase the productivity of low-diversity plots by aerating the soils [27,28]. There-
fore, a researcher cannot be sure whether differences in outcomes (productivity) are caused only
by the diversity treatments or whether weeding to maintain the treatments also had an effect.

Excludability violations can also arise when measurement error systematically changes with
treatment status [29]. For example, in herbivory experiments, plants in plots with herbivores are
likely to be trampled and eaten. Identifying plants may be more difficult in these plots than
those without herbivores. A correlation between the treatment status and measurement error
creates an excludability violation.

Excludability: solutions
Addressing potential excludability violations is best done at the design stage. At this stage, one
can determine which way to implement the treatment that would be least prone to creating unin-
tended causes. For example, one can anticipate whenmeasurement error may be correlated with
treatments and develop measurement protocols to mitigate these threats.

Even under the best designs, excludability may be violated. To address potential violations, two
categories of statistical approaches are available, although none can confirm that excludability
is satisfied (i.e., none can disconfirm all rival pathways from treatment assignment to outcomes).

First, one can use theory and field knowledge to identify how excludability may be violated (Figure
2A, red line) and then either control for them statistically or detect their influence on the outcome
Trends in Ecology & Evolution, December 2021, Vol. 36, No. 12 1143
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Figure 1. In the potential outcomes perspective, every study unit has a potential outcome for each treatment of the experiment. Here, we illustrate an
example of an experiment that quantifies the effect of herbivore removal on species richness. The two treatments for the ith plot are denoted by Ti and the potential
outcomes by Yi. Here, there are two treatments: Ti = 0 is the control where herbivores can graze and Ti = 1 is the treatment where exclosures prevent herbivores from
grazing. If the plot is a control, it has a potential outcome of five species. If it is treated, it has a potential outcome of three species. The difference between Yi(1) and Yi
(0) is the unit-level causal effect of the exclosure treatment. Given that researchers cannot observe both Yi(0) and Yi(1) for the same plot, they must make assumptions
about how randomized treatment conditions represent counterfactual conditions, which allows researchers to estimate an average treatment effect. Plant species
images by Tracy Saxby, IAN Image Library (https://ian.umces.edu/imagelibrary).
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via a falsification test. To control them statistically, one could try to measure the source of the
violation (e.g., soil aeration) and control for it directly by including it as a covariate in a regression,
similar to what is done in observational studies [13–16,30]. Alternatively, when the potential
sources of an excludability violation are known but not observable and therefore not amenable
to statistical control, a falsification test can be used (a.k.a. a placebo test, placebo design, or test
of known effect [16,30]). A falsification test uses either a placebo treatment or a placebo outcome.
A placebo treatment is a treatment that impacts the outcome through rival pathways only. For ex-
ample, in drought experiments (Figure 2), ecologists set up shelter controls that do not change pre-
cipitation but induce other causal pathways from shelters to the outcome should they exist [31]. A
placebo outcome is an outcome that could not be affected by the treatment but could be affected
by rival pathways created by the treatment assignment method. In both cases, if the estimated pla-
cebo effect is statistically different from zero at an ecologically meaningful magnitude, there is rea-
son to believe that the experimental design suffers from an excludability violation.

Second, one can use theory and field knowledge about the potential excludability violation to ei-
ther bound the value of the target treatment effect using partial identification or assess how
1144 Trends in Ecology & Evolution, December 2021, Vol. 36, No. 12

Image of &INS id=
https://ian.umces.edu/imagelibrary
CellPress logo


TrendsTrends inin EcologyEcology & EvolutionEvolution

(A) (B)

(D)(C)

Figure 2. Illustrations of (A) violation of excludability, (B) interference, (C) multiple versions of treatments, and (D) noncompliance. In (A), we show an
excludability violation in a drought experiment. The drought treatment (T = 1) affects plant growth [Y(1)], a causal effect represented by the black line between the
droplet and the plant. The drought treatment is applied using a shelter [Z(1)] represented by the black line between the shelter and the droplet. The shelter also impacts
plant growth by altering the temperature, humidity, and light, represented by the red line. Thus, the outcome is affected by the treatment and by the technique used to
manipulate the treatment. In (B), we illustrate interference in two potential arrangements of a herbivore exclusion experiment. Plots (squares) with black borders are
fenced to exclude herbivores; other plots serve as controls. The starred plot has different potential outcomes depending on the treatment plot arrangement. In (C), we
illustrate multiple versions of treatments in a biodiversity experiment. The potential productivity, for example, with two species and the potential productivity with four
species may depend on the species’ identity. Here, we show multiple versions of the four-species treatment: each version can lead to a different potential outcome. In
(D), we illustrate noncompliance of an experimental treatment where four species are planted. A plot complies with its treatment when it has all four planted species
growing in it. A plot does not comply when it has a different number (or identities) of species growing in it.

Trends in Ecology & Evolution
sensitive the estimated effect is to a potential violation of excludability (sensitivity tests to hidden
bias). For example, in a study that estimated how cash transfers to poor Indonesians affected
tropical forest loss [32], the authors argued that the estimated negative treatment effect was
not sensitive to an excludability assumption violation. To drive the estimated effect to zero, one
would have to assume there was no measurement error in the forest loss data and the unob-
served confounding variable(s) explained more than half of the variation in forest loss and was
one-fifth as important in affecting the variation in the treatment variable as were the control vari-
ables already in the analysis. The authors argued that this large degree of confounding was un-
likely. For more details, see [33,34] on partial identification and [16,32] on sensitivity tests.
Trends in Ecology & Evolution, December 2021, Vol. 36, No. 12 1145
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Box 1. Examples from abiotic manipulation experiments

Here we explore potential violations in each assumption required to infer causality in abiotic manipulation experiments.
These experiments include manipulations of nutrients, temperature, and rainfall.

Excludability

Passive warming experiments use cone-shaped chambers to increase temperature. The walls of the chambers can also
affect airflow, light conditions, and dispersal of other species into plots [54] and thus affect the outcomes of interest like
diversity, productivity, and stability.

Interference

In nutrient addition experiments that aim to estimate the effect of nutrients on species diversity and composition [55,56],
the results can be challenging to interpret when the diversity and composition of one plot affects the diversity and compo-
sition of other plots through, for example, dispersal (e.g., P. Hawthorne, PhD thesis, University of Minnesota, 2012; https://
www.cedarcreek.umn.edu/biblio/fulltext/Hawthorne_umn_0130E_12586.pdf). In this case, the causal effect from nutrient
addition on a plot depends on whether the neighboring plots were treated or control plots.

Multiple versions of treatments

In nitrogen addition experiments that aim to estimate the effect of increased nitrogen on ecosystem functions, the results
can be challenging to interpret when the effect depends on the different forms of nitrogen (e.g., urea vs ammonium nitrate)
or different manufacturers of a particular form, which may vary in their potency, residency time, and uptake into plants. If
the treatment effect on a plot depends on which version of nitrogen it received, drawing clear inferences from an experi-
ment can be challenging if multiple versions of nitrogen were used across space or time.

Noncompliance

• Nutrient addition experiments in arid systems may fail to deliver the treatment when no rain falls (fertilizers need suffi-
cient water to enter the soil). When lots of rain falls in mesic systems, nutrients may just run through the soil. In both
cases, treated plots are noncompliant.

• Nutrient addition experiments may accidently deliver additional nutrients to control plots when nutrients added to one
plot leach into other plots. In this case, control plots are noncompliant. Ecologist often avoid this spillover by sufficiently
spacing their plots when space allows.

• In exclusion experiments, the fences or cagesmay only partially exclude the target species. In other words, the species
that the fences or cages attempt to excludemay still enter the plots. Thus, these plots are noncompliant because some
herbivory is still occurring.

Trends in Ecology & Evolution
No interference: potential violations
Another core assumption of causal inference is that there is no interference between units, mean-
ing that the outcome of a unit depends only on its own treatment status but not on the treatment
status of another unit [35]. If each treatment assignment configuration creates a different set of
potential outcomes, there is interference between units. Interference is not the same as spatial
correlation (e.g., [3,36–38]), something for which some ecological experiments already account.
Plots can be nested within a site and not interfere with each other.

To illustrate, consider a randomized experiment that uses fences to exclude herbivores from plots
to quantify the causal effect of herbivores on carbon sequestration. Exclusion in some plots can
have effects on outcomes in unexcluded plots. First, many excluded plots around an unexcluded
plot may reduce the interest of herbivores in the unexcluded plot (Figure 2B, right panel), increas-
ing carbon sequestration in this unexcluded plot compared with what would have occurred had it
been surrounded by fewer excluded plots. Alternatively, some, but not many, excluded plots
around an unexcluded plot may displace herbivory pressure onto other unexcluded plots
(Figure 2B, left panel), reducing carbon sequestration in the unexcluded plot. The average causal
effect of herbivory depends on the specific treatment assignment configuration. This dependence
is an issue because control units are no longer unaffected by the treatment, which can lead to
biases when estimating causal effects.
1146 Trends in Ecology & Evolution, December 2021, Vol. 36, No. 12
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Box 2. Examples from biotic manipulation experiments

Here we explore potential violations in each assumption required to infer causality in biotic manipulation experiments.
These experiments include manipulations of richness, composition, and other attributes of community structure, along
with manipulations of trophic interactions.

Excludability violations

• Species removal experiments in rocky intertidal ecosystems often scrape sessile invertebrates (e.g., barnacles) or mac-
rophytes from substrates [57,58]. Scraping could lead to the removal of non-target species (e.g., snails, algae, other
sessile invertebrates), which could affect outcomes like productivity or interactions of non-removed species.

• Exclusion experiments in aquatic environments use cages to prevent consumers from entering plots. The cages can
also modify the abiotic environment (by changing wave energy in the rocky intertidal) and the biotic environment (by
affecting species interactions, as in [59]), changes that can subsequently affect outcomes like survival, growth, and
competition.

Interference
In biodiversity manipulation experiments that aim to estimate how changes in biodiversity effect ecosystem functions, the
manipulation of biodiversity in one plot may affect the ecosystem functions in other plots via, for example, dispersal. A low-
diversity plot with high-diversity neighbors may have different productivity than the same plot with low-diversity neighbors.
In this case, the treatment effect from a change in biodiversity on a plot depends on the treatment status of the neighboring
plots.

Multiple versions of treatments
In species-richness manipulation experiments that aim to estimate the effect of changes in the number of species on eco-
system function, the results can be challenging to interpret when the effect depends on the identity of the species. For ex-
ample, imagine a simple experiment where plots are randomly assigned to be planted with either two species or four
species chosen from a subset of species that grow at the site. The potential productivity with two species and the potential
productivity with four speciesmay depend on the identity of the species; for example, whether the species are rare or dom-
inant species [60] or whether they belong to a particular functional group. In this case, the estimated effect of going from
two to four species may depend on which subset of species is selected from all of the species that grow at a site and
whether all possible combinations of two and four species are planted.

Noncompliance
In species-removal experiments in rocky intertidal ecosystems, researchers scrape sessile invertebrates (e.g., mussels,
barnacles) from substrates. However, recolonization may occur. Thus, some locations that are assigned to the ‘spe-
cies-removal’ treatment will instead have sessile invertebrates on the substrate. To address this noncompliance, ecolo-
gists often repeatedly scrape to minimize recolonization [61,62], but this can lead to excludability violations (see above).

Trends in Ecology & Evolution
No interference: solutions
Like actions to address potential excludability violations, actions to address potential interference
are best done at the design stage. At this stage, one can identify ways that interference may arise
and take steps to mitigate or eliminate its effects. In ecological systems, many forms of interfer-
ence are local: the closer two units are to each other, the more likely it is that they will interfere
with each other. Thus, one can either ensure that study units are spaced far apart (e.g., [39]) –
thereby eliminating interference – or randomize treatments at larger spatial scales, such as
groups of neighboring plots rather than individual plots, thereby containing the interference within
the randomized units.

Another approach is to design the experiment to detect interference and adjust the estimated
causal effect to incorporate interference. These designs, called randomized saturation designs
[40], vary the treatment in ways that allow one to measure interference. For example, instead of
randomizing half of all plots in each study block to the treatment group, one would vary the per-
centage of treated plots in each block (e.g., some blocks would have 25% of their plots treated,
some would have 50%, and some would have 75%). With this design, one can quantify the effect
that arises when the treatment status of a plot’s neighbors affects a plot’s outcomes.
Trends in Ecology & Evolution, December 2021, Vol. 36, No. 12 1147
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Table 1. Design-based and analysis-based solutions to violations in core causal assumptions

Assumption How to avoid or address violations in the assumption Refs

Excludability Design stage
Experimental design: identify the ways in which the treatment can be applied
and use the one least likely to lead to excludability
Experimental design: develop measurement protocols to mitigate the
potential for measurement error to be correlated with treatment conditions

Analysis stage
Statistical control: measure sources of violation and control via covariates in
a statistical model

Falsification tests: probe assumptions of excludability and seek evidence
that assumptions may be invalid

[16,30,52]

Partial identification: construct bounds on estimated causal effect based on
assumptions about excludability violations

[33,34]

Sensitivity tests: test how sensitive the estimated effect size or statistical
significance is to potential excludability violations

[16,32]

No interference Design stage
Experimental design: space units sufficiently far apart

Experimental design: randomize treatments at larger spatial scales (e.g.,
randomize at blocks rather than plots)

Experimental design: randomized saturation design [40,53]

Analysis stage
Redefine causal effect: acknowledge that estimated effect is conditional on
treatment assignment arrangement

[41]

Modeling adjustment: model the interference to quantify or remove its effects [41]

Partial identification: construct bounds on estimated causal effect based on
assumptions about form of interference

[33,34,43]

No multiple versions
of treatments

Design stage
Experimental design: define each version as a treatment [45]

Experimental design: restrict treatments to a subset of versions [45]

Experimental design: randomize versions and take average across versions [45]

Analysis stage
Redefine causal effect: acknowledge that estimated effect is conditional on
an unknown distribution of versions

[45]

No noncompliance Design stage
Experimental design: design post-randomization procedures to ensure
compliance (e.g., calibrate machinery, replant species, remove unwanted
species)

Analysis stage
Redefine causal effect: estimate the Intent to Treat effect [15,48]

Redefine causal effect: estimate the Complier Average Causal Effect [15,49,50]

Trends in Ecology & Evolution
If interference cannot be fully addressed at the design phase, there are two main approaches to
address it in the analysis stage. First, one can redefine the causal effect as the effect of the treat-
ment conditional on the treatment assignment in the experiment. This shift in interpretation ac-
knowledges that the causal effect of the treatment may differ with different treatment
assignment patterns. Second, one can take approaches similar those described previously for
addressing excludability violations. For example, one can try to model interference (e.g., by as-
suming it occurs along a weighted distance gradient from each unit) to adjust the causal estimate
[41,42]. Alternatively, one could make assumptions about the spatial structure of interference to
create bounds around the true ATE instead of reporting a point estimate only (i.e., partial identifi-
cation) [33,43].
1148 Trends in Ecology & Evolution, December 2021, Vol. 36, No. 12
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No multiple versions of treatments: potential violations
To make clear causal claims in experiments, there cannot be multiple versions of the treatments,
meaning that a treatment must be consistent among all treated units [13,35]. Like interference,
multiple versions of treatments poses a challenge for the interpretation of results from experi-
ments because there are multiple potential outcomes per treatment status (Figure 2C). Each ver-
sion may have a different causal effect. For example, consider a nitrogen addition experiment that
used ammonium nitrate for the first several years then switched to urea in subsequent years.
Whether the differences between these two fertilizer versions are consequential depends on
whether the versions have different effects on the mechanisms that mediate the treatment effect
[44].

No multiple versions of treatments: solutions
To address the threat to inference from multiple versions, there are three design-based ap-
proaches. First, one can use each version as a different treatment and then estimate the effect
of each treatment version on the outcome. That approach, however, may often be logistically in-
feasible. The second approach, and the one likely to be the most popular in ecology, is to restrict
the experiment to a single version or a small set of versions. Such experiments may have high in-
ternal validity, but their results may not generalize to other treatment versions if those versions
affect the outcomes differently [44]. A third approach seeks greater generalizability by simply av-
eraging over the versions, at the cost of potentially missing important ecological insights about
mechanisms by ignoring differences across versions. In this approach, the researcher randomly
assigns treatment versions that are a random draw from a distribution of versions (e.g., as the ver-
sions are distributed in nature or a different distribution, like a uniform distribution; see example in
Box 2). The researcher would then interpret the estimated average causal effect as the expected
treatment effect from a randomly drawn version that is assigned to a randomly drawn unit from
the target population. For more methods to statistically address the threat of multiple treatment
versions, see [45].

No noncompliance: potential violations
Causal inference requires that units receive the treatment they were assigned. If a unit’s
actual condition differs from its assigned treatment condition, there is noncompliance
(Figure 2D). In ecological experiments where the treatment is applied by the researcher,
noncompliance may be minimal, but it is possible in some study designs. For example,
in species-richness manipulation experiments, researchers assign each plot a specific
number of species. However, after a plot is planted, some of the species may not estab-
lish or persist because of, for example, successional dynamics and competition. Thus,
some plots will have a realized richness that is lower than their assigned richness (e.g.,
[46,47]).

No noncompliance: solutions
Like actions to address excludability and interference, actions to address noncompliance are
best done at the design stage. These actions include careful planning to ensure that deviations
from the experimental protocol do not arise in the field, followed by careful monitoring to en-
sure, for example, that exclusion barriers are well maintained or that free-air CO2 enrichment
machines are well calibrated. However, actions to mitigate noncompliance can often lead to
excludability violations. For example, weeding or re-seeding plots to maintain planted richness
over time may affect ecosystem functions through causal paths that do not pass through the
richness treatment. Frequent visits to plots to monitor equipment can cause soil compaction
or other disturbances that can subsequently affect the outcomes that are the focus of the
study.
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Outstanding questions
How common are violations of the four
assumptions in ecological experiments
and are the violations serious enough
to change conclusions about
ecological processes?

Are certain types of ecological
experiments more prone to certain
violations?

How should we change the
interpretation of causal effects
from ecological experiments when
interference and noncompliance are
suspected?

When is variation in the treatment
ecologically consequential? Threats to
causal inference from multiple versions
of the treatment are challenging to
address because we need to know
what variations in the treatment matter.

How can ecologists make inferences
about intermediate causes when they
are not randomized? Intermediate
causes are on the path between
treatment and outcome (often called
‘mechanisms’ in the causal inference
literature). Ecologists may be tempted
to make causal claims about these
intermediate causes from experiments
where only the treatment is
randomized, not the intermediate
cause.

How might we create incentives and
norms for reporting on the validity of
the four assumptions described in this
review in ecological publications?
When it is not possible tomaintain 100% compliance, one can also address noncompliance in the
analysis phase. Simply excluding noncompliant units from the analysis or redefining their treat-
ment status based on the treatment they actually received is inappropriate unless one is willing
to assume that noncompliant units are a random draw from the target population (i.e., noncom-
pliance is unrelated to potential outcomes). When noncompliance is not random, as is likely for
most ecological contexts, dropping units or redefining their treatment status introduces exclud-
ability violations: the treated and control units (or units across multiple treatment conditions) no
longer have equal expected potential outcomes in the presence and absence of the treatment
(i.e., randomization no longer guarantees unbiased inferences from the data).

Instead of discarding or relabeling noncompliant units, researchers can change the causal effect
of interest and thus the interpretation of the estimate. Two popular approaches are to estimate
the intent-to-treat (ITT) effect [48] or the complier average causal effect [49] (CACE) [or a Local
Average Treatment Effect (LATE)] [50]. For example, a researcher may want to use Equation 1
to estimate the ATE, which is the expected effect of treatment exposure on a randomly chosen
unit from the target population. With noncompliance, however, a researcher cannot estimate
the ATE without making strong, untestable assumptions about the causes of noncompliance.
Treatment randomization still allows the researcher to estimate the ITT effect, which is the ex-
pected effect of treatment assignment on a randomly chosen unit from the target population. In-
stead of asking whether the treatment causes an effect, one asks whether the attempt to
manipulate the treatment variable has a causal effect (i.e., researchers analyze the units ‘as
assigned’ rather than ‘as treated’). In some contexts, like ecosystem management where the
treatment ‘as assigned’ is of interest (e.g., restoration), the ITT may be a useful ecological param-
eter. In cases where it is not useful, researchers may be able to estimate the CACE, which is the
expected effect of treatment for a randomly chosen unit that complies with its assigned treatment.
Compliers are a subgroup of the experimental units and may not be representative of all units.
Thus, the CACE may not capture a causal effect of scientific interest. However, it may be prefer-
able to the ITT or a biased estimate of the ATE. For details on how to estimate the CACE through
what are often called randomized encouragement designs or instrumental variable designs, see
[51].

Concluding remarks
The potential outcome perspective helps to clarify, regardless of the empirical design, the causal
effects that ecologists are trying to understand and the plausibility of the assumptions that are re-
quired to infer causality from correlations in the data. As noted by Pearl [12], data never speak by
themselves, whether they come from an experiment or an observational study. They only speak
when combined with untested – and often untestable – assumptions.

All empirical designs are judged by the extent to which theymay deviate from the ideal experiment
for the target research question, an experiment for which all assumptions described herein hold
with certainty and thus an experiment unlikely to exist in reality. The goal of researchers is to min-
imize the deviations from this ideal through changes in design, changes in analyses, and changes
in the interpretation of their real-world studies. From this perspective, one can see that, despite
the popular wisdom, there is no clear demarcating line between experimental and observational
studies. Broader understanding of this insight in ecology promises not only to improve empirical
science in ecology (see Outstanding questions) but also to break down the unproductive, histor-
ical barriers between experimental and observational approaches in ecology.
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