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Abstract: 

 

Ecologists are often interested in answering causal questions from observational data but 

generally lack the training to appropriately infer causation. When applying statistical analysis 

(e.g., generalized linear model) on observational data, common statistical adjustments can often 

lead to biased estimates between variables of interest due to processes such as confounding, 

overcontrol, and collider bias. To overcome these limitations, we overview the structural causal 

model (SCM), an emerging causal inference framework that can be used to determine cause and 

effect relationships from observational data. The SCM framework uses directed acyclic graphs 

(DAGs) to visualize a researchers’ assumptions about the causal structure of a system or process 

under study. Following this, a DAG-based graphical rule known as the backdoor criterion can be 

applied to determine statistical adjustments (or lack thereof) required to determine causal 

relationships from observational data. In the presence of unobserved confounding variables, an 

additional rule called the frontdoor criterion can be employed to determine causal effects. Here, 

we use simulated ecological examples to review how the backdoor and frontdoor criteria can 

return accurate causal estimates between variables of interest, as well as how biases can arise 

when they are not employed. We further provide an overview of studies that have applied the 

SCM framework in ecology. SCM and its application of DAGs have been broadly employed in 

other disciplines to make valid causal inference from observational data. Their use in ecology 

holds tremendous potential for quantifying causal relationships and investigating a range of 

ecological questions without randomized experiments.  
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Introduction: 

 

Observational studies in ecology rely on data that have not been experimentally manipulated and 

are commonly used to understand ecological patterns and processes seen in nature (Carmel et al. 

2013). Observational approaches are increasing in relevance due to the emergence of large-scale 

ecological questions that are not easily manipulated or controlled, such as invasive species and 

the consequences of climate change. New advances in technology, such as remote-sensing, 

environmental genetics, and animal-borne sensors, as well as increased availability of data online 

and from citizen science, have enhanced opportunities to answer previously intractable 

ecological questions using observational data (Sagarin and Pauchard 2010). 

 

Many observational studies in ecology are aimed at answering causal questions, such as the 

impact of marine protected areas on fishing communities (Mascia et al. 2010) or the effect of 

forest fragmentation on species richness (Sam et al. 2014). However, causal inference – the 

leveraging of theory and deep knowledge to estimate the impact of events, choices or other 

factors on a given outcome of interest (Cunningham 2021) – is rare. Yet without the 

consideration of causal relationships, statistical analysis can frequently lead to biased estimates 

(i.e., estimates that differ from the true parameter being estimated) that undermine ecological 

inferences by providing non-causal correlations among variables of interest (e.g., see Appendix 

S1). This is the basis of the often-repeated phrase “correlation does not imply causation” (F.A.D. 



  

1900). We believe that increasing the use of causal inference methods in observational ecology 

will reduce bias throughout the discipline and lead to more accurate assessments across a range 

of ecological questions, especially when experimental approaches are unfeasible.  

 

Structural causal modelling (SCM, Pearl 2009) is an emerging causal inference framework, 

which unifies the strong features of structural equation modeling (SEM; Wright 1921, Shipley 

2016) and Rubin’s potential outcome framework (PO; Rubin 2005) among others, to create a 

powerful theory of causation and framework for causal inference. Importantly, this framework 

can be used to determine cause and effect relationships from observational data, without needing 

to set up randomized control experiments (Pearl 2009). SCM has been widely employed across 

other disciplines, including econometrics (Imbens 2020), epidemiology (Pearce and Lawlor, 

2016), paediatrics (Williams et al. 2018) and psychology (Rohrer, 2018), as well as a few 

ecological studies (Cronin and Schoolmaster 2018; Schoolmaster et al. 2020; Schoolmaster et al. 

2022; Arif et al. 2022; Arif and MacNeil 2022). It holds tremendous potential for increasing the 

use of causal inference across observational ecological studies.  

 

Under the SCM framework, the derivation of causal effects rests on a set of causal assumptions 

about the data generating process (e.g., X effects Y and not the other way around). These causal 

assumptions are visualized using directed acyclic graphs (DAGs), which represent a researchers’ 

assumptions about the causal structure of a system or process under study (Pearl 2009; Morgan 

and Winship 2014). Given a DAG, a graphical rule known as the backdoor criterion determines 

the sufficient sets of variables for adjustment required to determine causal effects from 

observational data. When the backdoor criterion cannot be employed – due to the presence of an 



  

unobserved confounding variable – a second graphical rule called the frontdoor criterion can be 

employed. Using simulated ecological examples with specified (i.e., known) causal effects, we 

define these criteria and review how they can be employed to determine causal effects between 

variables of interest.  

 

To date, the few ecological studies that have employed the SCM framework have identified key 

causal relationships across study systems (Cronin and Schoolmaster 2018; Schoolmaster et al. 

2020; Arif et al. 2022), outlined steps required for observational causal inference (Cronin and 

Schoolmaster 2018; Arif et al. 2022), clarified SCM theory (Schoolmaster et al. 2022), and 

highlighted the utility of SCM for experimental and quasi-experimental approaches 

(Schoolmaster et al. 2020; Schoolmaster et al. 2022; Arif and MacNeil 2022). However, these 

studies can be niche topics and theoretically complex. Here, we provide an easily accessible 

overview of the SCM framework, highlighting two key tools – the backdoor and frontdoor 

criteria – that can be used for causal inference across observational ecological studies.  

 

Directed Acyclic Graphs (DAGs): 

 

DAGs are used to represent causal relationships within a given system. A DAG consists of a set 

of nodes (variables) that are connected to each other by edges (arrows). These arrows represent 

causal relationships between variables, pointing from cause to effect, with causes preceding their 

effects. For example, the DAG in Fig 1 shows that X directly effects Y (X  Y), W directly 

affects both X (W  X) and Y (W  Y), and W indirectly effects Y through X (W  X  Y). 

It is important to note that the arrows between nodes (variables) represent hypothesized causal 



  

relationships (i.e., a lack of causal relationship can be found following a SCM analysis). On the 

other hand, a lack of arrow between two nodes assumes no causal relationship between variables, 

representing strong a priori causal assumptions. Therefore, missing arrows encode causal 

assumptions, whereas arrows between nodes represent the possibility of an effect (Elwert, 2013). 

 

A key characteristic of DAGs is that they must be acyclic, meaning that they cannot contain bi-

directional relationships (i.e. arrows need to be unidirectional) or a feedback loop where a 

variable causes itself (Glymour and Greenland 2008, Elwert 2013). This limits the application of 

DAGs to ecological systems that do not contain bi-directionality and or feed-back loops. 

However, one way to resolve this issue is to articulate the temporal sequence of events more 

finely (Greenland et al. 1999). For example, if temperature at time one (Tempt1) effects ice 

cover, which then influences temperature at time two (Tempt2), Tempt1 and Tempt2 can be 

represented as separate nodes within a DAG, without violating acyclic requirements. For 

interested readers, Schoolmaster et al. (2020) provide a published ecological DAG that 

incorporates the temporal sequence of events (see their Appendix S2).  

 

DAGs are also non-parametric, meaning that they do not make any assumptions about the 

stochastic nature of variables or their observation, or the functional form of direct effects (e.g., 

linear, nonlinear, stepwise) and their effect size (Glymour and Greenland 2008). In this sense, a 

DAG is qualitative: X -> Y only communicates that X causally affects Y in some way, without 

specifying any other restrictions. This non-parametric nature of DAGs makes them compatible 

with a wide range of ecological systems.  



  

 

Using DAGs under the SCM Framework: 

 

DAGs are central to the SCM framework as they are used to visualize and quantify causal 

relationships from observational data (Pearl 2009). Fig 2 summarizes the SCM framework which 

includes creating a DAG (step 1), testing a DAG to ensure DAG-data consistency (step 2), 

applying either the backdoor or frontdoor criterion (step 3), choosing an appropriate statistical 

model (step 4), and making inference by quantifying a causal effect (step 5). As we walk through 

our review, we will follow the workflow in Fig 2 using simulated ecological examples 

interspersed with relevant theory and background information.  

 

Step 1: Creating a DAG: 

 

DAGs represent a researcher's causal assumptions about the data generating process of a system 

of process under study (Pearl 2009, Morgan and Winship 2014). As such, researchers should 

ensure that their DAG represents the complete causal structure of the system or process, 

including all relevant measured and unmeasured variables, as well as all common causes of any 

pair of variables included in the DAG (Sprites et al. 2001, Glymour and Greenland 2008). DAGs 

should also be rigorously justified based on domain knowledge, theory, and research. A 

combination of background information including experimental data, past literature, and domain 

knowledge can be used to create DAGs of ecological systems. For example, Ethier and Nudds 

(2017) gathered information from published literature and local stakeholder knowledge to create 



  

DAGs depicting factors affecting population dynamics of bobolink (Dolichonyx oryzivorus). In 

another study, Cronin and Schoolmaster (2018) synthesized past literature to create a DAG 

representing the causes of trait covariation. Expert opinion can also be elicited to generate 

DAGs. To ensure credibility and transparency, researchers should apply formal methods for 

surveying experts, which has been developed within the ecological literature (e.g., Choy et al. 

2009, Kuhnert et al. 2010, Martin et al. 2012, Drescher et al. 2013), including for the 

development of causal diagrams (e.g., Marcot et al. 2006, McNay et al. 2006). For example, 

Marcot et al. (2006) show how to use expert review to create their DAG on the probability of 

capture of northern flying squirrels. 

 

As a general ecological example, Fig 3 presents a DAG adapted from Adams et al. (2015), 

showing how different factors are expected to influence forest species abundance across a 

hypothetical region (Step 1, Fig 2). Here, protected areas are shown to effect forest species 

abundance through three intermediate processes: fire, poaching and logging (Adams et al. 2015). 

Other variables including distance to roads and cities, slope, and elevation effect both protected 

areas placement (protected areas are often placed in high and far places; Joppa et al. 2009) and 

forest species abundance through their effects on fire, poaching and/or logging (Adams et al. 

2015). We have created a simulated dataset, matching the causal structure of this DAG (Arif, 

2022). We will use this DAG and simulated dataset to work through the rest of the SCM 

workflow (Steps 2-5, Fig 2). Specifically, we will aim to answer how protected areas, fire, 

logging and poaching each effect forest species abundance. Because our simulated data was 

created with specified (i.e., known) causal effects, we can use it to show how the SCM 

framework can return accurate causal estimates.  



  

 

Step 2: Test DAG-Data Consistency: 

 

Once a DAG has been created, it can be tested against observational data to check for DAG-data 

consistency. Simply put, a DAG often asserts multiple independencies that should hold in the 

observational data, given that both the DAG and observational data are representative of the data 

generating process. Given a DAG, a pair of variables can be independent of each other (e.g., X is 

independent of Y) if there are no paths (i.e., a sequence of nodes and arrows) connecting them. 

As well, a pair of variables can be conditionally independent. Conditional independencies 

emerge from d-separation (dependency separation; Pearl 1988), a graphical rule for deciding 

whether a variable X is independent of another variable Y, given a set of variable(s), Z in a path.  

 

d-separation (Pearl, 1988): A set of variables, Z, is said to block (or d-separate) a path 

from one variable to another if either  

(i) the path contains at least one arrow-emitting variable that is in Z, or  

(ii) the path contains at least one collider variable (variable with two incoming arrows) 

that is outside Z and does not cause any variables in Z 

If all paths between X and Y are blocked (or d-separated) by Z, then X and Y are 

independent given Z, written X⊥Y|Z. For a more detailed discussion of d-separation, 

readers can reference Shipley (2000) and Shipley (2016) which discuss d-separation 

within an ecological context.  

 



  

DAG-data consistency requires that all implied independencies for a given DAG (including 

conditional independencies based on d-separation rules) are consistent with the observational 

dataset. For example, in a simplified DAG, X  Z  Y, X is independent of Y, given Z (an 

arrow-emitting variable that d-separates the path from X to Y). Therefore, the associated 

observational data should show that X is independent of Y when Z is adjusted for. Often a DAG 

will hold many independencies and these independencies can be tested against a dataset to ensure 

DAG-data consistency. If all implied independencies within a DAG coincide with the dataset, 

then this supports DAG accuracy. However, if at least one implied independency is refuted (i.e., 

does not match the data), then the DAG is not consistent with the data and would need to be 

adjusted.  

 

For our DAG (Fig 3), there are 28 independencies that can be tested against our simulated data to 

ensure DAG-data consistency (Appendix S2: Section S1). In an observational study, we would 

test these independencies against observational data. Here, we proceed by testing DAG-data 

consistency using our simulated dataset, to walk readers through the process. Specifically, we 

use the R package ‘dagitty’, which provides a user-friendly way to evaluate whether a DAG is 

consistent with a dataset, even when DAGs become increasingly complex and include many 

variables (Textor et al., 2016). Dagitty uses a formal test of zero correlation to test whether each 

identified independency of a specified DAG is consistent with a given dataset (see Textor et al. 

2016 for details). Using dagitty, we tested DAG-data consistency and found that all 28 

independencies were consistent with our simulated dataset (Step 2, Fig 2; see Arif, 2022 for R 

code). This is expected as our simulated data was created to match the causal structure of our 

DAG.  



  

 

In real world applications, a DAG may require a series of adjustments until DAG-data 

consistency is reached. As an ecological example, Schoolmaster et al. (2020) provide a real-

world example of a DAG used to understand the relationship between tree species composition 

and canopy cover. Their initial DAG failed DAG-data consistency and was subsequently updated 

using a combination of domain knowledge and results from failed independence tests 

(Schoolmaster et al. 2020). Anken et al. (2021) further provide general examples and guidelines 

on updating DAGs based on DAG-data consistency, using the R package ‘dagitty’. Importantly, 

they note that this process should be handled with care and always supported by domain 

knowledge. Failed independence tests are not necessarily proof that a DAG is incorrect; they can 

also indicate problems with the data (e.g., if the collected data does not represent the data-

generating process). Ultimately, there should be a firm theoretical basis for creating and revising 

DAGs.  

 

Once a DAG has been sufficiently justified and tested and updated based on DAG-data 

consistency, the backdoor (or frontdoor) criterion can be employed (Step 3, Fig 2). Before 

moving on to application of backdoor and frontdoor criteria, we briefly review why they can be 

applied to DAGs to determine causal effects from observational data.  

 

DAGs for causal effects 

 

Causal effects describe to what extent a predictor variable X (i.e., the cause) influences a 

response variable Y (i.e., an effect). The SCM framework uses counterfactual reasoning to 



  

determine the causal effect of X on Y (Pearl 2009). A counterfactual represents the potential 

outcome that would be realized if a predictor variable X was set to a different value, i.e., X=x. 

Specifically, a counterfactual for response variable Y is noted as Yx(u), which represents the 

value of (outcome) Y, had (predictor) X been x in unit (or situation) U = u (Rubin 2005, Morgan 

and Winship 2014). This counterfactual Yx(u) is represented by the equation: 

 

𝑌𝑌𝑥𝑥(u)  ≜  𝑌𝑌𝑀𝑀𝑥𝑥(u)           [1] 

 

Under the SCM framework, a DAG represents a structural model, M. In equation 1, Mx stands 

for a modified version of a model M, where X is intervened upon (i.e., “if X had been x”, X=x). 

Graphically Mx is represented by a modified DAG, where the arrows pointing into X are 

eliminated. Equation 1 states that the counterfactual Yx(u) is the solution for Y in the modified 

model Mx (see Galles and Pearl 1998 for axiom of Eq 1).  

 

This definition of counterfactuals can be used to predict the effect of interventions from 

observational data alone. Under the SCM framework, interventions are denoted by what’s known 

as the do-operator, written do() (Pearl 1995, 2009). For example, the query Q = P(y|do(x)) asks 

what the distribution of Y would be, if X is set to a particular value of x (i.e., the causal effect of 

X on Y). Related to Eq 1, this can be defined as  

 

P(y|do(x)) ≜ PMx (y) [2]  

 



  

showing that the distribution of outcome Y (if X is set to a particular value of x) is equal to the 

distribution of Y in the modified model Mx (Pearl 1995, 2009).  

 

Given that we do not have post-interventional data (following the distribution of Mx), the 

question becomes whether the query Q = P(y|do(x)) can be estimable from observational data 

(following the distribution of M) and the set of causal assumptions represented by its associated 

DAG. When a query includes a do-expression, an algebraic procedure known as do-calculus 

(Pearl 1995) can be used to equate post-interventional distributions (those represented in Mx) to 

pre-interventional (or observational) distributions (those represented in M). To identify an 

interventional query, e.g., Q = P(y|do(x), the inference rules of do-calculus (outlined in Pearl 

1995) need to be repeatedly applied until an expression is obtained that no longer contains a do-

operator. If this can be done, then the post interventional query is estimable from observational 

data. While the application of do-calculus makes for challenging reading, based on its derived 

inference rules, Pearl created the backdoor criterion and the frontdoor criterion, which are two 

DAG-based graphical rules that can be applied to estimate interventional queries from 

observational data (i.e., the causal effect of X on Y), without the need for do-calculus operations.  

 

Step 3 (Option 1): Apply Backdoor Criterion:  

 

The backdoor criterion (Pearl 1993, Pearl 2009) is used to identify a set of variables, Z, that 

when adjusted for, allows the post-interventional query Q = P(y|do(x)) to be accurately estimated 



  

from observational data. The backdoor criterion states that a set of variables, Z, is sufficient for 

estimating the causal effect of X on Y under two conditions: 

 

1. The variables in Z block all backdoor paths from X to Y. A path within a DAG is any 

sequence of arrows and nodes connecting two variables of interest, X and Y, regardless 

of direction. A backdoor path is a path between X and Y with an arrow pointing from Y 

and an arrow pointing into X. Backdoor paths create bias by providing one or more 

indirect, non-causal pathways through which information can leak from one variable 

through another, leading to spurious correlation. To block a backdoor path from X to Y, 

the backdoor path from X to Y must be d-separated. Again, the rules for d-separation are:   

d-separation (Pearl 1988): A set of variables, Z, is said to block (or d-separate) a path 

from one variable to another if either  

(i) the path contains at least one arrow-emitting variable that is in Z, or  

(ii) the path contains at least one collider variable (variable with two incoming arrows) 

that is outside Z and does not cause any variables in Z 

2. No element of Z is a descendant of (i.e., caused by) X. 

 

When applied, the backdoor criterion blocks all non-causal pathways between a predictor and 

response variable of interest, while leaving all causal paths open. As such, the application of 

backdoor criterion eliminates common statistical biases that can otherwise plague observational 

studies, including confounding, overcontrol, and collider bias. Appendix S1 defines each of these 

biases and shows how the backdoor criterion removes each of them. The main takeaway is that 



  

given a DAG, the application of the backdoor criterion will avoid all three biases, allowing for 

causal estimates to be made.  

 

Given our DAG (Fig 3), we can use the backdoor criterion to determine the sufficient set for 

adjustment required to answer our causal questions (Step 3, Fig 2). For example, if we want to 

quantify the causal effect of protected area on forest species abundance, there are nine backdoor 

paths that need to be blocked (i.e., d-separated):  

 

1. Forest Species Abundance  Carbon Sequestration  Logging  Elevation  

 Protected Area  

2. Forest Species Abundance  Carbon Sequestration  Logging  Slope  

 Protected Area  

3. Forest Species Abundance  Fire  Distance to Roads and Cities  Logging   

 Elevation  Protected Area 

4. Forest Species Abundance  Fire  Distance to Roads and Cities  Logging   

 Slope  Protected Area 

5. Forest Species Abundance  Logging  Elevation  Protected Area 

6. Forest Species Abundance  Logging  Slope  Protected Area 

7. Forest Species Abundance  Poaching  Distance to Roads and Cities  Protected 

 Area 



  

8. Forest Species Abundance  Logging  Distance to Roads and Cities  Protected 

 Area 

9. Forest Species Abundance  Fire  Distance to Roads and Cities  Protected Area7.  

 

The first four backdoor paths are already blocked because we have not adjusted for a collider 

variable (i.e., a variable with two incoming arrows:  X ) in each of these four paths. 

Specifically, carbon sequestration acts as a collider variable in backdoor paths 1 and 2, and 

logging acts as a collider in backdoor paths 3 and 4. The remaining backdoor paths do not 

contain collider variables and must be blocked by adjusting for an arrow-emitting variable that 

isn’t a descendent of (i.e., caused by) protected area, our predictor variable. As such, path 5 can 

be blocked by adjusting for elevation, path 6 can be blocked by adjusting for slope, and paths 7-9 

can all be blocked by adjusting for distance to roads and cities. Collectively, the causal effect of 

protected area on forest species richness, given this DAG can be quantified by adjusting for 

slope, elevation and distance to roads and cities.  

 

Given that application of the backdoor criterion can rapidly become difficult to keep track of for 

increasingly complex DAGs, researchers are encouraged to draw out their DAG on 

www.daggity.net (instructions within site), which will apply the backdoor criterion and generate 

the minimal sufficient adjustment set(s) required to determine causal effects, given a specified 

DAG and causal question. As an example, readers can visit dagitty.net/m18S_bV to work with 

our protected area DAG. Using this website (see Appendix S2: Section S2 for quick steps), to 

determine the causal effect of fire on forest species abundance, we can adjust for either (distance 



  

to roads and cities and protected area) or (logging and poaching). To determine the causal effect 

of poaching on forest species abundance we can adjust for either (distance to roads and cities and 

protected area) or (fire and logging). Last, to determine the causal effect of logging on forest 

species richness we can adjust for either (distance to roads and cities and protected area) or (fire 

and poaching). When there are multiple options for a sufficient adjustment set based on the 

backdoor criterion, researchers can choose a set based on data availability and measurement 

error. If known, it is best to select the set where variables are measured most accurately. 

 

We note that given our DAG and linear simulated data, causal effects between variables of 

interest could also be determined using alternative methods such as SEM. However, a strength of 

the backdoor criterion is that it can allow causal estimation without requiring the availability of 

all variables in a DAG (Pearl 2009). For example, the effect of protected area on forest species 

abundance requires observational data on only variables for protected area, forest species 

abundance, slope, elevation, and distance to roads and cities. By only including variables 

necessary for answering specific causal queries, this can further enhance estimation accuracy by 

reducing researchers’ reliance on noisy and irrelevant data (MacDonald 2004). In addition, the 

application of the backdoor criterion does not require lengthy algebraic manipulations, isn’t 

computationally taxing and is compatible across linear and non-parametric statistical approaches 

(Pearl 2009). Ultimately, it provides ecologists with a widely applicable method for covariate 

selection across observational studies.   

 

Step 4: Choose a Statistical Model 



  

Once the backdoor criterion is used to determine the sufficient set(s) for adjustment, researchers 

must decide on an appropriate statistical model to carry out their causal analysis. Since our 

simulated data was created with a linear causal structure, we have chosen linear regression 

models for analysis (Step 4, Fig 2). However, it is up to each researcher to decide what form of 

analysis will best suit their data. As DAGs are non-parametric, they make no assumptions about 

the distribution of variables (e.g., normal) or the functional form of effects (e.g., linear, 

nonlinear, stepwise), making them compatible with a wide range of statistical methods. DAGs 

are also compatible with both frequentist and Bayesian statistical approaches since they are used 

to determine the sufficient set(s) for adjustment, and not the analysis itself. Statistical models 

developed under the SCM framework are still beholden to the same issues of sample size and 

measurement error in terms of the precision of resulting estimates; however, they are based on 

causal reasoning.  

 

Step 5: Causal Effect 

Fig 4 shows that when the backdoor criterion was used to determine the sufficient set for 

adjustment, our linear regression models were able to correctly estimate the causal effect 

between selected predictor variables and forest species abundance, our response of interest (Step 

5, Fig 2; see Arif, 2022 for R code). This is achieved because the backdoor criterion blocks all 

non-causal pathways (i.e., backdoor paths) between our predictor and response variable of 

interest, while leaving all causal paths open. By adjusting for specific variables (if necessary) to 

answer specific causal questions, the backdoor criterion can guide causal inference in 

observational settings.  



  

 

Importantly, in performing a causal analysis we are not trying to find a ‘best model’ of the data 

according to criteria of model fit such as AIC, which seek to find the model with the greatest 

predictive support, regardless of potential biases present in estimated effect sizes (Burnham and 

Anderson 2002, Grace and Irvine 2020). For example, in Figure 5 we include a ‘causal salad’ 

model (McElreath 2020) typical of ecological observational studies (including our own past 

work), whereby all available variables thought to affect a response are thrown into one statistical 

model and subsequently interpreted, without directly addressing the causal structure of the 

system. In our simulated example, the causal salad model (Fig 4) is strongly favored over all 

other models by AIC, yet it provides an entirely inaccurate picture of the causal structure in the 

system. Under this approach, we obtain inaccurate estimates of our predictor variables of interest 

(Fig 4). For example, the estimated effect of protected area on forest species abundance is 

negligible due to overcontrol bias (see Appendix S1) occurring from the inclusion of fire, 

poaching and logging, which are intermediate variables between the predictor and response 

variable of interest. Effect sizes for fire, poaching and logging are also biased due to the 

inappropriate inclusion of carbon sequestration, which is not a predictor variable but is instead 

influenced by our response variable of interest. Collectively, these results demonstrate the 

general principle that the models used for causal inference must be carefully built to consider 

relevant causal relationships within a system prior to analysis. It also directly undermines 

‘variance explained’ as a modelling objective or arbiter of truth – without causal thinking to 

support modelling decisions, it is easy to add variables that seem to represent a better model 

according to a range of widely-used statistical criteria. In this, the backdoor criterion can play a 



  

critical role in model development that stands apart from typical model-selection methods, by 

determining the sufficient set(s) for adjustment required for causal inference. 

 

The Front Door Criterion: 

 

The DAG-based approach to causal models up to this point has assumed we have observational 

data on all variables needed to satisfy the backdoor criterion. However, in some circumstances, 

there may be a known but unobserved variable that confounds our results, preventing application 

of the backdoor criterion for determining causal effects. For example, if we want to determine 

the causal effect of X on Y for the DAG in Fig 5, the backdoor criterion instructs us to adjust for 

U. However, U is unobserved, and therefore cannot be used as a covariate in our final model. In 

such cases, an approach called the frontdoor criterion can be employed for causal inference 

(Pearl 1995, Pearl 2009). To quantify the effect of X on Y in the presence of unobserved 

confounders, a variable Z satisfies the frontdoor criterion if:  

1. Z blocks all directed paths from X to Y  

2. There are no unblocked paths from X to Z 

3. X blocks all backdoor paths from Z to Y  

 

Once a Z variable is identified, the causal effect of X on Y can be determined by first employing 

the backdoor criterion to separately determine the effect of X on Z and Z on Y (Fig 5). The 

product of these two causal effects (i.e., point estimates) then becomes the effect of X on Y 

(Pearl 1995; 2009). Below we show how to apply the front door criterion to determine the effect 

of sharks on rays based on a hypothetical ecological example.  



  

 

Step 1: Create a DAG 

The DAG in Fig 6a asserts that sharks effect rays, which in turn effect bivalves, through a top-

down trophic cascade which has previously been supported (Myers et al. 2007, Buam and Worm 

2009) and refuted (Grubbs et al. 2016) in the literature. In our hypothetical scenario, we also 

assert that fishing pressure effects both sharks and bivalves, but not rays. Here, observational 

data on fishing pressure isn’t available, making it an unobserved variable. Like our prior 

example, we created a simulated dataset (with known causal effects) matching our DAG (see 

Arif, 2022 for R code) to demonstrate the use of the frontdoor criterion. Specifically, we will 

show how to employ the frontdoor criterion to return the causal effect of sharks on bivalves, 

which we have set to 0.02. 

 

Step 2: Test DAG-data Consistency  

Given the DAG in Fig 6a, there are two independencies that can be tested based on d-separation 

rules: 1) fishing pressure is independent of rays, given sharks and 2) sharks are independent of 

bivalves, given fishing pressure and rays. However, testing either independency requires 

observational data on fishing pressure (our unobserved variable). Therefore, due to our 

unobserved confounding variable, DAG-data consistency cannot be tested based on d-separation 

rules in this case. However, we can still apply the frontdoor criterion for causal estimates with 

our asserted DAG (unchecked for DAG-data consistency).  

 



  

Step 3 (Option 2): Apply Frontdoor Criterion  

The frontdoor criterion can be employed to find the effect of sharks on bivalves. Rays satisfy the 

frontdoor criterion since (1) they block all directed paths from sharks to bivalves, (2) there are no 

unblocked backdoor paths from sharks to rays, and (3) all backdoor paths from rays to bivalves 

are blocked by sharks (see rules for frontdoor criterion above). To determine the effect of sharks 

on bivalves, we first need to apply the backdoor criterion to determine the effect of sharks on 

rays (which can be estimated without any adjustments), and the effect of rays on bivalves (which 

can be estimated by adjusting for sharks). Both sub-models can employ the backdoor criterion 

without needing to adjust for fishing pressure (our unobserved variable). The causal effect of 

sharks on bivalves can then be estimated by multiplying the effect of sharks on rays by the effect 

of rays on bivalves.  

 

Step 4: Choose a Statistical Model 

We use linear regression models because our simulated data was created using linear 

relationships. 

 

Step 5: Causal Effect 

Fig 6 shows that when the frontdoor criterion is employed, we were able to accurately determine 

the causal effect of sharks on bivalves (see Arif, 2022 for R code). Specifically, the product of 

the effect of sharks on rays (Fig 6b) and the effect of rays on bivalves (Fig 6c) gave us an 

accurate causal estimate of sharks on bivalves (0.02), without having to adjust for fishing 



  

pressure, our unobserved confounding variable. In contrast, a model with just rays regressed on 

sharks gives a misleading estimate of 0.99. Here, the correlation between sharks and rays is 

spurious due to the confounding effect of our unobserved fishing pressure variable.  

 

The front door criterion is not as widely applicable to ecological data as the backdoor criterion, 

given that it requires a specific causal structure, specified by its three rules (see above). 

However, in cases where these rules are met, the frontdoor criterion can provide causal 

estimates, regardless of the strength of unobserved confounding. As well, it can be employed in 

the presence of multiple unobserved confounding variables.  

 

Examples of SCM in Ecology 

Although currently underutilized, the SCM framework and its application of DAGs has been 

used to understand the causal structure of ecological systems. Here, we provide an overview of 

three recent applications of Pearl’s SCM framework in ecology.  

 

What causes climate-induced coral reef regime shifts? 

Climate-induced bleaching events can sometimes lead to coral reef regime shifts, whereby the 

benthic composition of a coral reef ecosystem abruptly transitions from one dominated by coral 

to one dominated by macroalgae (Bellwood et al. 2004). However, not all coral reefs regime shift 

following a bleaching event, and it is expected that certain factors may influence the likelihood 

of climate-induced regime shifts. Although past correlative studies have found correlations 



  

between key predictor variables (e.g., depth, structural complexity; Graham et al. 2015) and 

regime shift trajectory, these studies were not grounded in causal inference. For example, a 

literature review of observational coral reef regime shift studies showed that no studies to date 

employed causal inference methods, though they often used causal language to communicate 

their results (e.g., “the effect of”; Arif et al. 2022). Instead, these studies either used a causal 

salad approach or did not include any covariate adjustment, without communicating the overall 

causal structure of the system under study (Arif et al. 2022).  

 

To overcome these limitations, Arif et al. (2022) applied the SCM framework to understand how 

different factors influenced regime shift trajectory following the 1998 bleaching event across 

Seychelles coral reefs. They created a DAG depicting the causal structure of how factors are 

expected to influence regime shift trajectory in Seychelles, based on expert opinion and scientific 

literature (Fig 7). Given their DAG, they applied the backdoor criterion to determine if, and to 

what extent, different factors influenced regime shift trajectory in this region. As expected, they 

found that reduced depth and structural complexity, and high nutrient levels increased the 

likelihood of regime shifting. Importantly, Arif et al. (2022) found additional factors that were 

not evident from a past correlative studies using the same dataset and a causal salad approach 

(e.g., Graham et al. 2015). Additional insights included the positive effect of pre-disturbance 

macroalgae cover, branching coral and wave exposure of regime shift occurrence (Arif et al. 

2022). These results highlight that when dealing with observational data, different statistical 

adjustments can lead to different conclusions about a study system. Given this, Arif et al. (2022) 

recommend applying DAGs and the backdoor criterion for model selection across observational 

coral reef studies.  



  

 

What causes species-level trait covariation?  

Ecological theory suggests that there may be several causes of species-level trait covariation 

including size, pace of life, evolutionary history, and ecological condition (Cronin and 

Schoolmaster 2018). Although numerous studies have attempted to quantify the causal effect of 

these factors on trait covariation, these studies do not consider the causal structure driving trait 

variation, which in turn can lead to inappropriate statistical adjustments and biased estimates. To 

resolve this, Cronin and Schoolmaster 2018 synthesized relevant literature and domain 

knowledge to create a DAG representing the causes of species-level trait covariation that can be 

applied to across multiple kingdoms.  

 

As their Fig 8 DAG suggests, size and pace-of-life may be two direct causes of trait covariation, 

and their influence on traits are confounded by evolutionary history and ecological conditions. 

To determine how size and pace of life effect trait covariation, they first had to accurately 

quantify their causal effect on each trait, as this information was subsequently used to determine 

their influence on trait covariation. One way to do this is to employ the backdoor criterion. For 

example, to determine the effect of size on a trait (e.g. Trait 1 in Fig 8), the backdoor criterion 

instructs us to adjust for either pace of life or evolutionary constraints and ecological condition to 

remove the confound of evolutionary history and ecological condition. In contrast, previous 

studies have estimated the effect of either size or pace of life on traits without first controlling for 

these confounding variables (e.g. Brown et al. 2004; Johnson et al. 2012). Another widely 

accepted approach has been to first account for evolutionary constraints and then analyze the 

residuals (e.g. Bielby et al. 2007, Huang et al. 2013). However, Cronin and Schoolmaster 2018 



  

show that these approaches lead to erroneous estimates about the causes of trait covariation. 

They also showed that methods including principle component analysis (PCA) and exploratory 

factor analysis (EFA) are not able to partition trait covariance when the direct causes (size and 

pace of life) are correlated due to shared drivers (evolutionary history and ecological conditions). 

This is concerning as several high-profile studies have used these techniques to reach their 

conclusions (e.g. Wright et al. 2004 concluded from a PCA that size is the only causes of lead 

trait covariance). Taken together, a well-considered DAG guides ecologists on the sufficient 

set(s) for adjustment required to quantify the causes of trait-covariation and further highlights the 

utility of Pearl’s SCM framework for observational causal inference.  

 

Is biodiversity a cause of ecosystem functioning?  

A central goal of ecology is to understand the causes of ecosystem functioning (Mittelbach 

2012); however, correctly identifying these causes has been difficult because there are numerous 

hypothesized drivers that are often interrelated. A widespread belief among ecologists is that 

biodiversity is a prominent cause of ecosystem functioning (Tilman et al. 2014). Hundreds of 

papers have published Biodiversity-Ecosystem Function (BEF) correlations across various 

ecological systems, with conflicting theories and conclusions (Schoolmaster et al. 2020). To 

better understand whether biodiversity causally effects ecosystem functioning, Schoolmaster et 

al. 2020 created a DAG by synthesizing BEF literature and logic (Fig 9a). Their DAG deviates 

from the standard model whereby species richness is assumed to effect ecosystem functioning 

through functional trait diversity (Loreau 2001), and instead posits that species composition 

effect both species richness and functional trait diversity, with functional trait diversity driving 

ecosystem functioning (Fig 9a).   



  

 

Given their DAG (Fig 9a), the backdoor criterion states that functional trait distribution and the 

environment needs to be adjusted for to determine the causal effect (or lack thereof) of 

biodiversity on ecosystem function. Using simulated and empirical data, Schoolmaster et al. 

2020 show that when this is done, there is no causal relationship found between biodiversity and 

ecosystem functioning. Instead, they argue that previous observational studies that have found an 

association between biodiversity and ecosystem function arise from model misspecification (i.e., 

having an incomplete or incorrect set of predictors). For example, given their DAG, confounding 

bias from failing to condition on environmental factors can lead to spurious (i.e., non-causal) 

associations between biodiversity and ecosystem functioning. Given their DAG, Schoolmaster et 

al. 2020 conclude that BEF correlations are non-causal associations. Instead, their model 

suggests that it is species composition and not biodiversity that drives ecosystem functioning.   

 

Recently, a comment on Schoolmaster et al. (2020) was published by Grace et al. (2021), 

criticizing their DAG and conclusions, asserting that biodiversity causally effects ecosystem 

functioning. They provide an alternative DAG, which maintains that biodiversity can causally 

effect ecosystem functioning indirectly through its effect on trait diversity (i.e., ‘distinct 

functional trait’; Fig 9b). This aligns with the standard model (Loreau, 2001) on BEF 

correlations being causal. Schoolmaster et al. 2022 responded with a comprehensive reply, 

addressing critiques of their DAG, clarifying the SCM framework, and showing that the standard 

model and past interpretations of BEF experiments are not supported by causal analyses. 

Interestingly, Schoolmaster et al. 2022 note that the simulations provided by Grace et al. (2021) 



  

do not represent the standard model DAG they defend, but instead map onto the DAG presented 

by Schoolmaster et al. (2020).  

 

Although the issue of BEF correlation versus causation has yet to be resolved, there now exist 

two contradictory DAGs that can be used to focus critical debate and deepen our understanding 

of this potential process. As noted by Grace et al. (2021), DAGs allow researchers to state their 

causal assumptions explicitly and transparently. Ultimately, this allows other researchers to 

examine those causal assumptions and subsequent interpretations critically, as was done by 

Grace et al. (2021) and Schoolmaster et al. 2022. Ultimately, communicating and critiquing 

researchers’ causal assumptions through DAGs may lead to a deeper understanding of BEF 

correlations, as well as for other ecological phenomena.  

 

Additional Considerations 

Inaccurate or Unknown Causal Structure 

One of the potential limitations of DAGs is that they may not accurately represent the true causal 

nature of an ecological system. Simply put, inaccurate DAGs will lead to inaccurate causal 

inference. This can arise when using incorrect theory and background information, or by creating 

DAGs based on available data, rather than incorporating all relevant variables (such as omitted 

or unobserved variables). However, as a researcher’s causal assumptions are explicitly stated 

through graphical representation, DAGs allow reviewers to explicitly critique and correct 

potential problems with far more transparency than is typical (Pearl 2009, Pearl 2010). Further, 



  

the ability to test DAG-data consistency via d-separation rules facilitates more reliable 

conclusions (Textor et al. 2016).  

 

We believe that SCM should be used whenever researchers have causal objectives and sufficient 

background knowledge to create and justify the assertions made in their DAG. If, however, the 

causal structure between the predictor and response variables of interest are not fully known, but 

there exists enough background knowledge and support to create several plausible DAGs (each 

of which support DAG-data consistency), it may be advantageous to present all DAGs as 

plausible alternatives, reflecting this epistemic uncertainty. This should provide more accurate 

estimates, especially when predictor variables have the same covariate adjustments across a 

range of plausible DAGs. We emphasize that since several DAGs can pass DAG-data 

consistency, it is always imperative to first justify a DAG (or set of DAGs) based on theory, 

instead of relying solely on DAG-data consistency.  

 

Application within quasi-experimental and experimental approaches 

In recent years, ecologists have promoted the use of quasi-experimental methods for causal 

inference, including propensity score matching, before-after-control-impact (BACI) studies, 

regression discontinuity design, and instrumental variables (Butsic et al. 2017, Larsen et al. 

2019). Here, DAGs and the principles of the SCM framework (e.g., the backdoor criterion) can 

be used to create more robust study designs as well as explicitly communicate assumptions 

required for quasi-experimental approaches (Arif and MacNeil 2022). For example, propensity 

score matching is employed to remove confounding bias associated with ecological 



  

observational studies (e.g., Ramsey et al. 2019). However, although past ecological studies 

assumed confounding variables that enter a propensity score analysis, it is unclear how these 

variables relate to one another and within the broader causal structure of a study system. Without 

this knowledge, it is unclear whether there are unmeasured variables that need to be included in 

the propensity score (leading to confounding bias) or whether the inclusion of selected variables 

may lead to other forms of bias (e.g., overcontrol and collider bias; Shrier 2009, Sjolander 2009, 

Mansournia et al. 2013). As noted by Pearl, for a propensity score analysis to be valid, the 

selected variables that enter a propensity score must satisfy the backdoor criterion to remove bias 

(Pearl 2009). In other words, the variables that enter a propensity score should be the sufficient 

set for adjustment based on the backdoor criterion. For an overview of how the SCM framework 

can guide quasi-experimental study designs (including propensity score and other matching 

methods, BACI studies, regression discontinuity designs and instrumental variables), we refer 

readers to Arif and MacNeil (2022). By utilizing DAGs and the principles of the SCM 

framework, ecologists can design more robust quasi-experimental approaches, while explicitly 

communicating their causal assumptions to their audience. 

 

DAGs and the SCM framework can also guide causal inference in experimental studies. Like 

observational studies, experimental studies rely on causal assumptions that must be ensured by 

the researcher (Kimmel et al. 2021). Here, DAGs can be used to understand if data collected 

from an experimental set up (e.g., natural experiment or randomized control trail (RCT)) can be 

used for causal inference or if there are sources of bias that need to be accounted for (e.g., 

Williams et al. 2018; Schoolmaster et al. 2020; Schoolmaster et al. 2022). For example, Williams 

et al. (2018) overview a RCT investigating the effect of an intervention promoting breastfeeding 



  

on cognitive development during childhood. A DAG of this study clarifies that only using data 

from individuals who attend a follow-up session can lead to collider bias because both the 

intervention and outcome can affect the likelihood of individuals following up; therefore, follow-

up data should not be distinctly analyzed (Williams et al. 2018). As an ecological example, 

Schoolmaster et al. (2020) use their biodiversity-ecosystem function (BEF) DAG to argue that 

BEF experiments do not directly manipulate biodiversity, but rather manipulate community 

structure, failing to isolate for the biodiversity effect.    

 

Conclusions  

Ecology has relied on observational data from its inception (Elton 1927), yet use of causal logic 

has typically been limited to controlled randomized experiments. Our ongoing reliance on 

observational data to understand fundamental questions in ecology requires the increased use of 

valid causal inference methodologies. Here we have introduced Pearl’s SCM framework, which 

allows causal inference to be made in a wide range of observational contexts. The SCM 

framework uses DAGs to visualize the hypothesized causal structure of a system or process 

under study, allowing researchers to explicitly communicate their causal assumptions. Once a 

DAG has been built that is sufficient to characterize a system or process under study, the 

backdoor or frontdoor criterion can be employed to guide appropriate statistical adjustments 

required for causal inference. Doing so can improve conclusions made from observation-based 

research and will ultimately increase the depth and pace of ecological research. 
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Figure Legends  

 

Figure 1. A directed acyclic graph (DAG) representing the causal structure between three 

variables, X, Y and W.  

 

Figure 2. A workflow for going from DAGs to causal inference under the SCM framework.  

 

Fig 3. A DAG representing how different factors may influence forest species abundance.  

 

Figure 4. Results from linear regression models that employed the backdoor criterion to 

determine the causal effect of different predictor variables on forest species abundance, 

using our simulated dataset with specified (i.e., known) causal effects. Predictor, response, 

and control variables are highlighted in green, blue, and black, respectively; omitted variables are 

shaded in grey. We chose generalized linear regression as our statistical models; for example, the 

protected area model is represented by the linear regression equation: Forest Species Abundancei 

= α + β1Protected Areai + β2Slopei + β3Elevationi + β4Distance to Roads and Citiesi + εi. The 

known and estimated causal effects, along with AIC values are noted for each model. Lastly, the 

results from a causal salad model (where all variables are placed under one model) are shown as 

a contrast, with estimated effects for each included variable noted in red. 

 

Figure 5. A DAG where the effect of X on Y cannot be estimated (due to an unobserved 

confounding variable U) without the use of the front door criterion.  

 



  

Figure 6. Employing the frontdoor criterion. (a)  A DAG representing the causal structure 

between sharks and bivalves. Here, fishing pressure is an unobserved variable, and the frontdoor 

criterion needs to be employed to determine the effect of sharks on bivalves. (b, c) Employing 

the frontdoor criterion to determine the effect of sharks on bivalves from our simulated shark-

bivalve dataset. Linear regression models were used to first determine the effect of sharks on 

rays and the effect of rays on bivalves, using the backdoor criterion to determine the sufficient 

set for adjustment. The product of these two effects gives us the effect of sharks on bivalves. 

Known causal effects (from our simulated data) between variables of are noted for comparison.  

 

Figure 7. A DAG representing how different factors may influence coral reef regime shifts 

following a climate-induced bleaching event across Seychelles, from Arif et al. (2022).  

 

Figure 8. A DAG representing how different factors influence species-level trait 

covariation, from Cronin and Schoolmaster 2018.  

 

Figure 9. Two DAGs representing the causal relationship between biodiversity and 

ecosystem function. The DAG in (a) is from Schoolmaster et al. 2020 and the DAG in (b) is 

from Grace et al. 2021.  
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