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INTRODUCTION

Ecologists frequently ask questions that are best

addressed with a model comparison approach. Under

this system, the merit of several models is considered

without necessarily requiring that (1) models are nested,

(2) one of the models is true, and (3) only current data be

used. This is in marked contrast to the pragmatic blend

of Neyman-Pearson and Fisherian significance testing

conventionally emphasized in biometric texts (Christen-

sen 2005), in which (1) just two hypotheses are under

consideration, representing a pairwise comparison of

models, (2) one of the models, H0, is assumed to be true,

and (3) a single data set is used to quantify evidence

concerning H0.

As Murtaugh (2014) noted, null hypothesis testing can

be extended to certain highly structured multi-model

situations (nested with a clear sequence of tests), such as

extra sums of squares approaches in general linear

models, and drop in deviance tests in generalized linear

models. This is especially true when there is the

expectation that higher order interactions are not

significant or nonexistent, and the testing of main effects

does not depend on the order of the tests (as with

completely balanced designs). There are, however, three

scientific frameworks that are poorly handled by

traditional hypothesis testing.

First, in questions requiring model comparison and

selection, the null hypothesis testing paradigm becomes

strained. Candidate models may be non-nested, a wide

number of plausible models may exist, and all of the

models may be approximations to reality. In this

context, we are not assessing which model is correct

(since none are correct), but which model has the best

predictive accuracy, in particular, which model is

expected to fit future observations well. Extensive

ecological examples can be found in Johnson and

Omland (2004), Burnham and Anderson (2002), and

Anderson (2008).

Second, the null hypothesis testing paradigm is often

inadequate for making inferences concerning the falsi-

fication or confirmation of scientific claims because it

does not explicitly consider prior information. Scientists

often do not consider a single data set to be adequate for

research hypothesis rejection (Quinn and Keough

2002:35), particularly for complex hypotheses with a

low degree of falsifiability (i.e., Popper 1959:266).

Similarly, the support of hypotheses in the generation

of scientific theories requires repeated corroboration

(Ayala et al. 2008).

Third, ecologists and other scientists are frequently

concerned with the plausibility of existing or default

models, what statistician would consider null hypotheses

(e.g., the ideal free distribution, classic insular biogeog-

raphy, mathematic models for species interactions,

archetypes for community succession and assembly,

etc.). However, null hypothesis testing is structured in

such a way that the null hypothesis cannot be directly

supported by evidence. Introductory statistical and

biometric textbooks go to great lengths to make this

conceptual point (e.g., DeVeaux et al. 2013:511, 618,

Moore 2010:376, Devore and Peck 1997:300–303).

PARSIMONY: FIT VS. COMPLEXITY

In deciding which model is the best, criteria are

necessary that allow model comparisons. While some

scientists feel that more complex models are always

more desirable (cf. Gelman 2009), others prefer those

that balance uncertainty, caused by excessively complex

models, and bias, resulting from overly simplistic

models. The latter approach emphasizes parsimony. A

parsimonious model should (Aho 2013), ‘‘be based on

(be subset from) a set of parameters identified by the

investigator as ecologically important, including, if

necessary, covariates, interactions, and higher order

terms, and have as few parameters as possible (be as

simple as possible, but no simpler).’’

Consider the examination of species population

descriptor (e.g., number of individuals) as a function

of an environmental factor in which the true relationship

between Y and X is Yi¼ eðXi�0:5Þ � 1þ ei, where ei ; N(0,

0.01) (black lines in Fig. 1). We randomly sample for the

conditional values of Yi 10 times and apply two models,

a simple linear regression (Fig. 1a), and a fifth-order

polynomial (Fig. 1b). The simpler model underfits the

data and misses the nonlinear association of Y and X
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(Fig. 1a). The polynomial model, however, introduces

erratic variability, and prevents statements of generality.

Thus, both simplistic and overly complex models

prevent valid inferences. The usefulness of a criterion

that establishes the line between underfit and overfit

models is obvious.

TWO PARSIMONY ESTIMATORS: AIC AND BIC

A Web of Science search conducted for this paper

revealed that for ecological publications from 1993–

2013, the two most popular measures of parsimony were

the Akaike information criterion (AIC; Akaike 1973)

and the Bayesian information criterion (BIC), also

called the Schwarz or SIC criterion (Schwarz 1978).

Specifically, for publications that implemented formal

methods for multi-model inference, 84% used AIC, 14%

used BIC, while only 2% used some other approach

(Table 1). Murtaugh (2013) discusses AIC extensively in

his defense of P values, but ignores BIC, prompting its

consideration and comparison here. We posit that P

values are at odds with BIC in the same way Bayesian

hypothesis testing is at odds with P values (cf. Kass and

Raftery 1995). Indeed, when substituting BIC for AIC in

Murtaugh’s derivation of P values from DAIC, fixed P

values do not equate to fixed differences in BIC, unless n

is fixed. This is consistent with the fact that P values

must decrease (holding other factors constant) to favor

the alternative hypothesis as sample size increases. AIC

and BIC are defined as

AIC ¼ �2 ln LðĥÞ þ 2p

BIC ¼ �2 ln LðĥÞ þ p ln n

where L(ĥ) is the likelihood of the estimated model (in

the context of general linear models, e.g., regression and

ANOVA, this is the likelihood of the parameters in N(0,

r̂2) given the model residuals, where r̂2 is the maximum

likelihood estimate for the variance of the error term

distribution), p is the total number of parameters that

are estimated in the model (including r2 for general

linear models), and n is the sample size. For both indices,

smaller values indicate better models.

AIC and BIC are generally introduced in textbooks

(often together) as alternative measures for parsimony

(cf. Kutner et al. 2005). Perhaps as a consequence,

ecologists often use these measures interchangeably (or

even simultaneously) without consideration of their

differing qualities and merits. This view of exchange-

ability has, perhaps, been further entrenched by a recent

ecological comparison of these methods that found no

difference in efficacy among AIC, BIC, and several other

criteria (Murtaugh 2009), and by articles that present

these summaries side by side. However, we will show

that this view is misplaced. In the remainder of this

paper we explore and contrast BIC and AIC and make

recommendations for their respective use in multi-model

inference by ecologists.

TABLE 1. Results from a Web of Science search of publications on 13 August 2013 using the Science Citation Index Expanded
(SCI-EXPANDED) database for the years 1993–2013.

Search terms for topic No. citations Proportion

Model selection AND (AIC* OR Akaike) AND ecol* 139 0.84
Model selection AND (BIC OR Bayes factor OR Schwarz) AND ecol* 23 0.14
Model selection AND (mallow OR FPE OR KIC OR Hannan-Quinn, Geweke-Meese) AND ecol* 4 0.02

FIG. 1. Two sorts of models fit to a random process: (a) two parameter (simple linear regression) and (b) six parameter (fifth-
order polynomial) (c.f., Sakamoto et al. 1986). The heavy black line indicates the true relationship between Y and X, while the gray
lines are fits from linear models based on random data sets, each with 100 paired observations. Despite its complexity, the
polynomial model is more parsimonious (average Akaike information criterion [AIC] ¼�167 vs. �42) because it captures the
curvilinear nature of the association.
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AIC AND BIC: MATHEMATICAL MOTIVATIONS

AND OBJECTIVES

When simply examining the formula for AIC and BIC

it is easy to misunderstand AIC and BIC as competing

criteria intended to achieve the same goal. Both criteria

balance simplicity (measured by, p, the dimension of the

fitted model parameter space) and goodness of fit

(measured by maximized likelihood). However the initial

question, which curve ‘‘best’’ fits the data, can be

paraphrased in a number of ways, and AIC and BIC are

each answers to different questions, once the question is

stated more precisely.

The most obvious reason likelihood alone cannot be

used to pick between models is that models with more

free parameters (when models are nested) will always

have higher maximum likelihood. Akaike (1973) wanted

to estimate the likelihood of a model while adjusting for

the bias introduced by maximum likelihood. Using the

Kullback-Liebler (KL) distance, he was able to formu-

late the log-likelihood maximization problem in such a

way that the bias associated with likelihood maximiza-

tion could be estimated and corrected for (see Burnham

and Anderson 2002). Given discrete probability models,

KL information is

Ið f ; gÞ ¼
X

x

f ðxÞln f ðxÞ
gðxÞ

� �

where f (x), defines the probabilistic densities of the error

distribution associated with the true model, while g(x)

defines the error density of an approximating model

with known parameters. The term I( f, g) represents the

information lost when the candidate model is used to

represent truth. Because the log of a quotient is the

difference of logs, KL information can be separated into

the difference of two summations. The first is equivalent

to Shannon-Weiner diversity (information per individ-

ual) from community ecology (Pielou 1966). The second

represents the log of the probability of the union of

observed disjoint events.

Akaike’s approach achieves an important objective:

asymptotic efficiency (Shibata 1976). Asymptotic effi-

ciency is essentially minimized prediction error. Criteria

like AIC maximize predictive accuracy.

The approach taken by Schwarz (1978) is the

asymptotic approximation, for the regular exponential

family, of a Bayesian hypothesis testing procedure (Kass

and Raftery 1995, Robert 2007). The BIC procedure

derived by Schwarz is consistent. Thus, when the sample

size increases, the correct model, from any group of

models, is selected.

Schwarz and Akaike appear to have thought their

approaches were in conflict. Schwarz (1978) wrote: ‘‘For

large numbers of observations, the procedures differ

markedly from each other. If the assumptions of Section

2 are accepted [for the formulation of the problem as a

Bayesian hypothesis test see Kass and Raftery (1995)],

Akaike’s criterion cannot be asymptotically optimal.’’

Akaike felt compelled to write a paper in response

(Akaike 1978), which in our view does not clarify much,
but does seem to indicate Akaike would like to address

an apparent paradox. In fact the conflict is easily
resolved once it is acknowledged that ‘‘asymptotically

optimal’’ can have several meanings. Asymptotic effi-
ciency and (asymptotic) consistency are different kinds
of optimality.

McQuarrie and Tsai (1998) compare a large number
of model selection procedures, and immediately divide

them into two classes: consistent estimators, namely
BIC, Hannan and Quinn information (Hannan and

Quinn 1979), and GM (Geweke and Meese 1981), and
efficient estimators, namely AIC, Mallows’ Cp (Mallows

1973), predicted residual sum of squares (PRESS; Allen
1974), Akaike’s FPE (Akaike 1969), and cross valida-

tion. A close link between leave-one-out cross validation
and AIC can be found in Stone (1977).

It is now known that there is a class of model selection
tools that provide the best predictive accuracy, and that

class is headed by AIC. There is also a class of
confirmation/falsification tools that are consistent, and

that class is headed by BIC. So when would each be
used?

TWO WORLD VIEWS

Two different approaches to simulation

Consider two different simulations, A and B. In

simulation A, a very complex model produces the data,
and a number of models are candidates to fit the data.

Because the process producing the data is very complex,
we never expect the sample size of our data sets to

approach d, the parameter space of the model (or
process) producing the data (i.e., d � n), nor do we

necessarily expect our candidate models to match the
exact functional form of the true model. Thus, d, the
number of parameters in the true model need not equal

p, the number of parameters in a candidate statistical
model, and the parameters for an optimal model may

not include the complete pool of true parameters, and/or
may include extraneous parameters.

In simulation B, a relatively simple process produces
the data. The sample size of the data sets can be expected

to greatly exceed d, the parameter space of the model
generating the data (i.e., d � n). One of the candidate

models being fitted to the data is actually equivalent to
the actual model that produced the data

In these two contexts, the model that best fits the data
must be interpreted differently. In simulation A, we can

never find the true model, we can only find the model
that maximizes predictive accuracy (model selection). In

simulation B, we actually expect to find the correct
model, as sample size increases (confirmation/falsifica-

tion).
It will become clear that AIC is appropriate for real-

world situations analogous to simulation A, and BIC is
appropriate for real-world situations similar to simula-
tion B. AIC will almost always outperform BIC in
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simulations designed like simulation A, and BIC will

almost always outperform AIC in simulations similar to

simulation B.

The BIC world

In an effort to make Bayesian inference more

objective and more closely tied to Jeffreys’ (1935) notion

of evidence for a hypothesis, a number of statisticians

(e.g., Casella et al. 2009), biometrists (Goodman 1999,

Suchard et al. 2005), and ecologists (Link and Barker

2006, Ellison 1996) have adopted the notion of the Bayes

factor (or posterior P values, see Ramsey and Schafer

2012) for hypothesis or model comparison. Suppose that

two hypotheses, H1 and H2, are to be compared, then

Pr(H1 j data)/Pr(H2 j data) ¼ posterior odds ¼ Bayes

factor 3 prior odds.

Kass and Raftery (1995), in their definitive paper,

provide a motivation for Bayes factors and a number of

applications where Bayes factors seem especially useful.

The BIC formulation is an asymptotic approximation to

the Bayes factor (Schwarz 1978, Robert 2007). Kass and

Raftery routinely treat BIC as an approximation to

Bayes factors. Thus, applications in this paper provide

excellent examples where BIC would also be appropri-

ate.

Kass and Raftery provide five such examples,

including two from biology/environmental manage-

ment. Each of these has two characteristics: (1) only a

few potential hypotheses are considered and (2) one of

the hypotheses is (essentially) correct. Although the

second characteristic is not always overtly stated, they

often cite consistency as a desirable asymptotic property

of Bayes factors and/or BIC.

It is clear from their discussion of ‘‘Bayes factors vs.

the AIC’’ (which is primarily a comparison of AIC and

BIC) that they value BIC over AIC because it is

consistent. That is, when the sample size is sufficiently

large, BIC picks the correct model, while AIC picks a

model more complex than the true model. This reflects a

‘‘worldview’’ in which hypotheses are being compared,

and one of the hypotheses is correct.

The AIC world

A few scientists have a very different ‘‘world view.’’

Breiman (2001) writes: ‘‘There are two cultures in the use

of statistical modeling to reach conclusions about data.

One assumes the data are generated by a given stochastic

data model. The other uses algorithmic models and

treats the data mechanism as unknown.’’ Breiman does

not have an opinion on the question ‘‘AIC or BIC?’’ but

he nonetheless seems to live in the world of simulation

type A: he emphasizes the importance of cross-valida-

tion predictive accuracy as the measure of success, and

models that grow in complexity as sample size increases.

Similarly, Hurvich and Tsai (1989), with reference to

autoregressive moving average (ARMA) time series

modeling, write: ‘‘If the true model is infinite dimen-

sional, a case that seems most realistic in practice, AIC

provides an asymptotically efficient selection of a finite

dimensional approximating model.’’

The prevalence of type A thinking is obvious

throughout the popular biometric text on model

selection by Burnham and Anderson (2002) and in

other works by these authors (e.g., Anderson and

Burnham 2002). This is because this worldview corre-

sponds more closely to the reality of many biological

investigations, particularly in ecology: extremely com-

plex systems with an unknown (and perhaps unknow-

able) underlying structure (cf. Johnson and Omland

2004, Burnham et al. 2011).

Fig. 1 is typical of a type A simulation. The correct

model is not one of the candidate models, so consistency

is irrelevant. For those who are interested in AIC (often

in forecasting or open-ended model selection) the

common characteristics are (1) numerous hypotheses

and (2) the conviction that all of them are to differing

degrees wrong.

In the type A world, efficiency (predictive accuracy) is

important. Overfitting means a model that will have a

lot of random noise if used for future prediction, while

underfitting means a model that will have a bias when

used for future prediction. In the type A world, as

sample size increases, more small (tapering) effects are

picked up, and the size of the selected model increases.

In the type B world, consistency is important.

Overfitting is picking a model more complex than the

true model, and underfitting is picking a model simpler

than the true model. As sample size increases, the true

model rises to the top (cf. Anderson 2008: Appendix E).

It is easy to confuse these worlds

The quest for a procedure that is both consistent

and efficient seems impossible, when looked at in this

way. Specifically, efficient methods must pick larger

models with increased sample size, whereas consistent

methods must settle on a fixed complexity with

increased sample size. One approach to model selection

cannot do both. This view is supported mathematically

by Yang (2005) who showed that while BIC is

consistent in optimal model selection, it cannot be

optimal for regression function estimation in the sense

of multi-model inference, and that while AIC repre-

sents minimax-rate optimal rules for estimating the

regression function, it is not consistent for optimal

model selection.

One of the paradoxes of model selection is that almost

all research is based on type B simulations (Breiman

2001), but most statisticians, and even ecologists (e.g.,

Bolker 2008, Scheiner and Willig 2011) love to quote

George Box: ‘‘All models are wrong, but some are

useful.’’ It should be noted that Box, and his most

important work, time series forecasting, is fundamen-

tally type A. At least one well-known statistics textbook

suggests data splitting as the optimal way to find the best

model, but if this is impossible one should use BIC, as

opposed to AIC, because it is consistent—an odd
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mixture of type A and type B reasoning (Montgomery et

al. 2008:60).

It is interesting to consider the performance of AIC

and BIC in the context of increasingly large data sets.

With respect to BIC, it is clear that, given type B

simulation, the larger the sample size, the larger the

probability BIC selects the true model. The relationship

is less well defined with AIC (since n is not specified in

its formula). However, one would expect that, in a type

A simulation, as sample size increases (and consequent-

ly larger models are selected), that predictive power

would also increase. Thus, as n grows larger both

criteria will work better, but with different goals in

mind.

There doesn’t seem to be any basis for always

preferring one world view over the other, both have a

place in ecological model selection (cf. Murtaugh 2009).

However, there are reasons to be aware that there are

two world views, and to remain consistently within a

given world view on a given modeling problem.

Model selection and confirmation/falsification contrasted

Table 2 can be seen as a framework for asking

questions to pin down whether AIC (or related tools) or

BIC (or related tools) are appropriate for a given

application. Some questions, motivated by this table are:

Is your analysis exploratory (AIC) or confirmatory

(BIC)? Is the analysis open-ended (AIC), or are a few

specific models representing a well understood process

being compared (BIC)? As the data set gets larger, do

you expect your model to grow in complexity (AIC), or

stabilize (BIC)? Do you believe you have chosen the

correct functional form of the relationship as well as the

correct variables (yes, BIC; no, AIC)? Is your goal

accurate prediction (AIC) or finding the correct model

(BIC)?

CONCLUSION

Murtaugh (2014) revealed an important mathematical

connection between DAIC and P values for a compar-

ison of two models (one nested in the other). Such an

application, however, constitutes a very narrow use of

an information-theoretic criterion. We agree with

Murtaugh that null hypothesis testing has an important

role in ecology, and that conceptual problems with this

paradigm are often due to misapplication and misun-

derstanding by users. Nonetheless, many ecological

endeavors pose questions that are not easily answered

by null hypothesis tests. For instance, models may not

be nested, and the ecologist may want to treat the null

and alternative hypothesis as having the same status

with regard to support based on the evidence. There are

tools for this situation, but the proper tool depends on a

further distinction. What has often been designated as

model selection has been here further parsed into

complex (infinite) model selection, for which AIC and

related tools are the appropriate; and confirmation/

falsification, for which BIC and related tools are

appropriate.

TABLE 2. The worlds of AIC and BIC contrasted.

Factor AIC BIC

Mathematical characteristics

Derivation Estimated information loss. Approximate Bayes factor.
Optimality criterion Asymptotic efficiency. Consistency.
Close cousins Data splitting, Mallows’ Cp, PRESS. Hannan-Quinn, Geweke and Meese, Bayes

factors, and Bayesian hypothesis testing.

World View

Problem statement Multiple incompletely specified or infinite
parameter models.

A small number of completely specified
models/hypotheses.

Perspective ‘‘All models are wrong, but some are
useful.’’

‘‘Which model is correct?’’

Simulation structure d � n d � n
With increased n . . . Best model grows more complex. Procedure focuses in on one best model.

Applications

Context Exploratory analysis; model selection to
address which model will best predict
the next sample; imprecise modeling;
tapering effects.

Confirmatory analysis; hypothesis testing; model
selection to address which model generated the
data;
Low dimension, precisely specified models.

Ecological examples Complex model selection applications, e.g.,
predictive models for community,
landscape, and ecosystem ecology; time
series applications including forecasting.

Controlled experiments, for instance in
physiology/enzymatics/genetics with a limited
number of important, well-understood,
biological predictors; models including expected
or default (null) frameworks, e.g., enzyme
kinetics models, Hardy-Weinberg equilibrium,
or RAD curves, one of which is expected to be
correct.

Notes: The number of parameters in the true model is d; sample size is n. Abbreviations are: PRESS, predicted residual sum of
squares; and RAD, ranked abundance distribution.
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