6 The Haunted DAG & The Causal Terror

It seems like the most newsworthy scientific studies are the least trustworthy. The more
likely it is to kill you, if true, the less likely it is to be true. The more boring the topic, the
more rigorous the results. How could this widely believed negative correlation exist? There
doesn’'t seem to be any reason for studies of topics that people care about to produce less
reliable results. Maybe popular topics attract more and worse researchers, like flies drawn to
the smell of honey?

Actually all that is necessary for such a negative correlation to arise is that peer reviewers
care about both newsworthiness and trustworthiness. Whether it is grant review or journal
review, if editors and reviewers care about both, then the act of selection itself is enough to
make the most newsworthy studies the least trustworthy. In fact, it's hard to imagine how
scientific peer review could avoid creating this negative correlation. And, dear reader, this
fact will help us understand the perils of multiple regression.

Here’s a simple simulation to illustrate the point®3. Suppose a grant review panel receives
200 proposals for scientific research. Among these proposals, there is no correlation at all
between trustworthiness (rigor, scholarship, plausibility of success) and newsworthiness (so-
cial welfare value, public interest). The panel weighs trustworthiness and newsworthiness
equally. Then they rank the proposals by their combined scores and select the top 10% for
funding.

At the end of this section, I show the code to simulate this thought experiment. Fic-
URE f.1 displays the full sample of simulated proposals, with those selected in blue. I've
drawn a simple linear regression line through the selected proposals. There’s the negative
correlation, —0.77 in this example. Strong selection induces a negative correlation among
the criteria used in selection. Why? If the only way to cross the threshold is to score high, it is
more common to score high on one item than on both. Therefore among funded proposals,
the most newsworthy studies can actually have less than average trustworthiness (less than
0 in the figure). Similarly the most trustworthy studies can actually be less newsworthy than
average.

This general phenomenon has been recognized for a long time. It is sometimes called
BERKSON’s PARADOXEY, But it is easier to remember if we call it the selection-distortion
effect. Once you appreciate this effect, you’ll see it everywhere. Why do so many restaurants
in good locations have bad food? The only way a restaurant with less-than-good food can
survive is if it is in a nice location. Similarly, restaurants with excellent food can survive even
in bad locations. Selection-distortion ruins your city.

What does this have to do with multiple regression? Unfortunately, everything. The
previous chapter demonstrated some amazing powers of multiple regression. It can smoke
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FIGURE 6.1. Why the most newsworthy stud-
ies might be the least trustworthy. 200 re-
search proposals are ranked by combined
trustworthiness and newsworthiness. The top
10% are selected for funding. While there is
no correlation before selection, the two crite-
ria are strongly negatively correlated after se-
lection. The correlation here is —0.77.

trustworthiness
0

newsworthiness

out spurious correlations and clear up masking effects. This may encourage the view that,
when in doubt, just add everything to the model and let the oracle of regression sort it out.

Regression will not sort it out. Regression is indeed an oracle, but a cruel one. It speaks
in riddles and delights in punishing us for asking bad questions. The selection-distortion
effect can happen inside of a multiple regression, because the act of adding a predictor in-
duces statistical selection within the model, a phenomenon that goes by the unhelpful name
COLLIDER BIAS. This can mislead us into believing, for example, that there is a negative as-
sociation between newsworthiness and trustworthiness in general, when in fact it is just a
consequence of conditioning on some variable. This is both a deeply confusing fact and one
that is important to understand in order to regress responsibly.

This chapter and the next are both about terrible things that can happen when we simply
add variables to a regression, without a clear idea of a causal model. In this chapter, we'll ex-
plore three different hazards: multicollinearity, post-treatment bias, and collider bias. We'll
end by tying all of these examples together in a framework that can tell us which variables we
must and must not add to a model in order to arrive at valid inferences. But this framework
does not do the most important step for us: It will not give us a valid model.

Overthinking: Simulated science distortion. Simulations like this one are easy to do in R, or in any
other scripting language, once you have seen a few examples. In this simulation, we just draw some
random Gaussian criteria for a sample of proposals and then select the top 10% combined scores.

set.seed(1914)

N <- 200 # num grant proposals

p <- 0.1 # proportion to select

# uncorrelated newsworthiness and trustworthiness
nw <- rnorm(N)

tw <- rnorm(N)

# select top 10% of combined scores

s <- nw + tw # total score

g <- quantile( s , 1-p ) # top 10% threshold
selected <- ifelse( s >= q , TRUE , FALSE )
cor( tw[selected] , nw[selected] )
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I chose a specific seed so you can replicate the result in FIGURE f.1], but if you rerun the simulation
without the set. seed line, you’ll see there is nothing special about the seed I used.

6.1. Multicollinearity

It is commonly true that there are many potential predictor variables to add to a regres-
sion model. In the case of the primate milk data, for example, there are 7 variables available
to predict any column we choose as an outcome. Why not just fit a model that includes all
7¢ There are several hazards. The one we'll focus on here is MULTICOLLINEARITY. Mul-
ticollinearity means very strong correlation between two or more predictor variables. The
consequence of it is that the posterior distribution will seem to suggest that none of the vari-
ables is reliably associated with the outcome, even if all of the variables are in reality strongly
associated with the outcome. This frustrating phenomenon arises from the details of how
multiple regression works. In fact, there is nothing wrong with multicollinearity. The model
will work fine for prediction. You will just be frustrated trying to understand it. The hope is
that once you understand multicollinearity, you will better understand regression models in
general.

Let’s begin with a simple simulation. Then we'll turn to the primate milk data again and
see multicollinearity in a real data set.

6.1.1. Multicollinear legs. The simulation example is predicting an individual’s height us-
ing the length of his or her legs as predictor variables. Surely height is positively associated
with leg length, or at least the simulation will assume it is. Nevertheless, once you put both
leg lengths into the model, something vexing will happen.

The code below will simulate the heights and leg lengths of 100 individuals. For each,
first a height is simulated from a Gaussian distribution. Then each individual gets a simulated
proportion of height for their legs, ranging from 0.4 to 0.5. Finally, each leg is salted with a
little measurement or developmental error, so the left and right legs are not exactly the same
length, as is typical in real populations. At the end, the code puts height and the two leg
lengths into a common data frame.

N <- 100 # number of {individuals
set.seed(909)

height <- rnorm(N,10,2) # sim total height of each

leg_prop <- runif(N,0.4,0.5) # leg as proportion of height
leg_left <- leg_propxheight + # sim left leg as proportion + error

rnorm( N , @ , 0.02 )
leg_right <- leg_propxheight + # sim right leg as proportion + error
rnorm( N , 0 , 0.02 )
# combine into data frame
d <- data.frame(height,leg_left,leg_right)

Now let’s analyze these data, predicting the outcome height with both predictors, leg_left
and leg_right. Before approximating the posterior, however, consider what we expect. On
average, an individual’s legs are 45% of their height (in these simulated data). So we should
expect the beta coeflicient that measures the association of a leg with height to end up around
the average height (10) divided by 45% of the average height (4.5). Thisis 10/4.5 ~ 2.2. Now
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let’s see what happens instead. I'll use very vague, bad priors here, just so we can be sure that
the priors aren’t responsible for what is about to happen.

m6.1 <- quap(
alist(
height ~ dnorm( mu , sigma ) ,
mu <- a + blxleg_left + brxleg_right ,
a ~ dnorm( 10 , 100 ) ,
bl ~ dnorm( 2 , 10 ) ,
br ~ dnorm( 2 , 10 ) ,
sigma ~ dexp( 1 )
)
data=d )
precis(m6.1)

mean sd 5.5% 94.5%

a 0.98 0.28 0.53 1.44
bl 0.21 2.53 -3.83 4.25
br 1.78 2.53 -2.26 5.83
sigma 0.62 0.04 0.55 0.69

Those posterior means and standard deviations look crazy. This is a case in which a graphical
view of the precis output is more useful, because it displays the posterior means and 89%
intervals in a way that allows us with a glance to see that something has gone wrong here:

plot(precis(m6.1))

a ——
b
br
sigma e
-4 -2 0 2 4 6
Value

Go ahead and try the simulate a few more times, omitting the set. seed line. If both legs
have almost identical lengths, and height is so strongly associated with leg length, then why
is this posterior distribution so weird? Did the posterior approximation work correctly?

It did work correctly, and the posterior distribution here is the right answer to the ques-
tion we asked. The problem is the question. Recall that a multiple linear regression answers
the question: What is the value of knowing each predictor, after already knowing all of the
other predictors? So in this case, the question becomes: What is the value of knowing each
leg’s length, after already knowing the other leg’s length?

The answer to this weird question is equally weird, but perfectly logical. The posterior
distribution is the answer to this question, considering every possible combination of the
parameters and assigning relative plausibilities to every combination, conditional on this
model and these data. It might help to look at the bivariate posterior distribution for b1 and
br:
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FIGURE 6.2. Left: Posterior distribution of the association of each leg with
height, from model m6. 1. Since both variables contain almost identical in-
formation, the posterior is a narrow ridge of negatively correlated values.
Right: The posterior distribution of the sum of the two parameters is cen-
tered on the proper association of either leg with height.

post <- extract.samples(m6.1)
plot( bl ~ br , post , col=col.alpha(rangi2,0.1) , pch=16 )

The resulting plot is shown on the left of FIGURE .2. The posterior distribution for these
two parameters is very highly correlated, with all of the plausible values of b1 and br lying
along a narrow ridge. When b1 is large, then br must be small. What has happened here
is that since both leg variables contain almost exactly the same information, if you insist on
including both in a model, then there will be a practically infinite number of combinations
of bl and br that produce the same predictions.

One way to think of this phenomenon is that you have approximated this model:

yi ~ Normal(u;, o)

pi = o+ Pixi + Box;
The variable y is the outcome, like height in the example, and x is a single predictor, like the leg
lengths in the example. Here x is used twice, which is a perfect example of the problem caused

by using the almost-identical leg lengths. From the computer’s perspective, this model is
simply:

yi ~ Normal(u;, o)

pi = a+ (81 + Ba)xi
All T've done is factor x; out of each term. The parameters 3; and (3, cannot be pulled apart,
because they never separately influence the mean . Only their sum, /3, + 35, influences y.. So

this means the posterior distribution ends up reporting the very large range of combinations
of 51 and 3, that make their sum close to the actual association of x with y.
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And the posterior distribution in this simulated example has done exactly that: It has
produced a good estimate of the sum of b1 and br. Here’s how you can compute the posterior
distribution of their sum, and then plot it:

sum_blbr <- post$bl + postsSbr
dens( sum_blbr , col=rangi2 , lwd=2 , xlab="sum of bl and br" )

And the resulting density plot is shown on the right-hand side of FIGURE f.2. The posterior
mean is in the right neighborhood, a little over 2, and the standard deviation is much smaller
than it is for either component of the sum, bl or br. If you fit a regression with only one of
the leg length variables, you’ll get approximately the same posterior mean:

m6.2 <- quap(
alist(
height ~ dnorm( mu , sigma ) ,
mu <- a + blxleg_left,
a ~ dnorm( 10 , 100 ) ,
bl ~ dnorm( 2 , 10 ) ,
sigma ~ dexp( 1 )
)
data=d )
precis(mé6.2)

mean sd 5.5% 94.5%
a 1.00 0.28 0.54 1.45
bl 1.99 0.06 1.89 2.09
sigma 0.62 0.04 0.55 0.69

That 1.99 is almost identical to the mean value of sum_b1lbr.

You'll get slightly different results in your own simulation, due to random variation
across simulations. But the basic lesson remains intact across different simulations: When
two predictor variables are very strongly correlated, including both in a model may lead to con-
fusion. The posterior distribution isn’t wrong, in such cases. It’s telling you that the question
you asked cannot be answered with these data. And that’s a great thing for a model to say,
that it cannot answer your question. And if you are just interested in prediction, you'll find
that this leg model makes fine predictions. It just doesn’t make any claims about which leg
is more important.

This leg example is clear and cute. But it is also purely statistical. We aren't asking any
serious causal questions here. Let’s try a more causally interesting example next.

6.1.2. Multicollinear milk. Intheleglength example, it’s easy to see that including both legs
in the model is a little silly. But the problem that arises in real data sets is that we may not
anticipate a clash between highly correlated predictors. And therefore we may mistakenly
read the posterior distribution to say that neither predictor is important. In this section, we
look at an example of this issue with real data.

Let’s return to the primate milk data from earlier in the chapter. Let’s get back the original
data again:
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library(rethinking) 2§0de
data(milk) '
d <- milk

d$SK <- scale( d$kcal.per.g )
d$F <- scale( dSperc.fat )
dSL <- scale( d$perc.lactose )

In this example, we are concerned with the variables perc. fat (percent fat) and perc. lactose
(percent lactose) that we might use to model the total energy content, kcal.per.g. The code
above has already standardized these three variables. You're going to use these three variables
to explore a natural case of multicollinearity. Note that there are no missing values, NA, in
these columns, so there’s no need here to extract complete cases. But you can rest assured
that quap, unlike reckless functions like 1m, would never silently drop cases.

Start by modeling kcal.per.g as a function of perc. fat and perc.lactose, but in
two bivariate regressions. Look back in Chapterf (page [[51)), for a discussion of these priors.

# kcal.per.g regressed on perc.fat ggode
m6.3 <- quap( '
alist(

K ~ dnorm( mu , sigma ) ,
mu <- a + bFxF ,
a ~ dnorm( 0 , 0.2 ) ,
bF ~ dnorm( @ , 0.5 ) ,
sigma ~ dexp( 1 )

) , data=d )

# kcal.per.g regressed on perc.lactose
m6.4 <- quap(
alist(
K ~ dnorm( mu , sigma ) ,
mu <- a + bLxL ,
a ~ dnorm( 0 , 0.2 ) ,
bL ~ dnorm( @ , 0.5 ) ,
sigma ~ dexp( 1 )
) , data=d )

precis( m6.3 )
precis( m6.4 )

mean sd 5.5% 94.5%
a 0.00 0.08 -0.12 0.12
bF 0.86 0.08 0.73 1.00
sigma 0.45 0.06 0.36 0.54

mean sd 5.5% 94.5%
a 0.00 0.07 -0.11 0.11
bL -0.90 0.07 -1.02 -0.79
sigma 0.38 0.05 0.30 0.46



R code
6.10

172 6. THE HAUNTED DAG & THE CAUSAL TERROR

10 30 50
3
kcal.per.g g
©
° FIGURE 6.3. A pairs plot of the total en-
3 ergy, percent fat, and percent lactose vari-
2 perc.fat ables from the primate milk data. Percent
o fat and percent lactose are strongly nega-
tively correlated with one another, provid-
R ing mostly the same information.
perc.lactose
8
0.5 0.7 09 30 50 70

The posterior distributions for bF and bL are essentially mirror images of one another. The
posterior mean of bF is as positive as the mean of bL is negative. Both are narrow posterior
distributions that lie almost entirely on one side or the other of zero. Given the strong associ-
ation of each predictor with the outcome, we might conclude that both variables are reliable
predictors of total energy in milk, across species. The more fat, the more kilocalories in the
milk. The more lactose, the fewer kilocalories in milk. But watch what happens when we
place both predictor variables in the same regression model:

m6.5 <- quap(
alist(
K ~ dnorm( mu , sigma ) ,
mu <- a + bFxF + bL*L ,
a ~ dnorm( 0 , 0.2 ) ,
bF ~ dnorm( 0 ,
bL ~ dnorm( 0 ,
sigma ~ dexp( 1
)
data=d )
precis( m6.5 )

mean sd 5.5% 94.5%

a 0.00 0.07 -0.11 0.11
bF 0.24 0.18 -0.05 0.54
bL -0.68 0.18 -0.97 -0.38

sigma 0.38 0.05 0.30 0.46

Now the posterior means of both bF and bL are closer to zero. And the standard deviations
for both parameters are twice as large as in the bivariate models (m6.3 and m6. 4).

This is the same statistical phenomenon as in the leg length example. What has happened
is that the variables perc. fat and perc.lactose contain much of the same information.
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They are almost substitutes for one another. As a result, when you include both in a regres-
sion, the posterior distribution ends up describing a long ridge of combinations of bF and
bL that are equally plausible. In the case of the fat and lactose, these two variables form
essentially a single axis of variation. The easiest way to see this is to use a pairs plot:

pairs( ~ kcal.per.g + perc.fat + perc.lactose , data=d , col=rangi2 )

I display this plot in FIGURE fp.3. Along the diagonal, the variables are labeled. In each scat-
terplot off the diagonal, the vertical axis variable is the variable labeled on the same row and
the horizontal axis variable is the variable labeled in the same column. For example, the
two scatterplots in the first row in FIGURE p.3 are kcal.per.g (vertical) against perc. fat
(horizontal) and then kcal.per.g (vertical) against perc.lactose (horizontal). Notice
that percent fat is positively correlated with the outcome, while percent lactose is negatively
correlated with it. Now look at the right-most scatterplot in the middle row. This plot is the
scatter of percent fat (vertical) against percent lactose (horizontal). Notice that the points
line up almost entirely along a straight line. These two variables are negatively correlated,
and so strongly so that they are nearly redundant. Either helps in predicting kcal.per.g,
but neither helps much once you already know the other.

In the scientific literature, you might encounter a variety of dodgy ways of coping with
multicollinearity. Few of them take a causal perspective. Some fields actually teach students
to inspect pairwise correlations before fitting a model, to identify and drop highly correlated
predictors. This is a mistake. Pairwise correlations are not the problem. It is the conditional
associations—not correlations—that matter. And even then, the right thing to do will de-
pend upon what is causing the collinearity. The associations within the data alone are not
enough to decide what to do.

What is likely going on in the milk example is that there is a core tradeoft in milk com-
position that mammal mothers must obey. If a species nurses often, then the milk tends to
be watery and low in energy. Such milk is high in sugar (lactose). If instead a species nurses
rarely, in short bouts, then the milk needs to be higher in energy. Such milk is very high in
fat. This implies a causal model something like this:

L < ® > F

K

The central tradeoff decides how dense, D, the milk needs to be. We haven’t observed this
variable, so it’s shown circled. Then fat, F, and lactose, L, are determined. Finally, the com-
position of F and L determines the kilocalories, K. If we could measure D, or had an evolu-
tionary and economic model to predict it based upon other aspects of a species, that would
be better than stumbling through regressions. Wed just regression K on D, ignoring the
mediating L and F, to estimate the causal influence of density on energy.

The problem of multicollinearity is a member of a family of problems with fitting models,
a family sometimes known as NON-IDENTIFIABILITY. When a parameter is non-identifiable,
it means that the structure of the data and model do not make it possible to estimate the
parameter’s value. Sometimes this problem arises from mistakes in coding a model, but
many important types of models present non-identifiable or weakly identifiable parameters,
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even when coded completely correctly. Nature does not owe us easy inference, even when
the model is correct.

In general, there’s no guarantee that the available data contain much information about
a parameter of interest. When that’s true, your Bayesian machine will return a posterior
distribution very similar to the prior. Comparing the posterior to the prior can therefore
be a good idea, a way of seeing how much information the model extracted from the data.
When the posterior and prior are similar, it doesn't mean the calculations are wrong—you
got the right answer to the question you asked. But it might lead you to ask a better question.

Rethinking: Identification guaranteed; comprehension up to you. Technically speaking, identifia-
bility is not a concern for Bayesian models. The reason is that as long as the posterior distribution is
proper—which just means that it integrates to 1—then all of the parameters are identified. But this
technical fact doesn’t also mean that you can make sense of the posterior distribution. So it’s probably
better to speak of weakly identified parameters in a Bayesian context. There will be several examples
as the book progresses.

Overthinking: Simulating collinearity. The code to produce FIGURE ?? involves writing a function
that generates correlated predictors, fits a model, and returns the standard deviation of the posterior
distribution for the slope relating perc.fat to kcal.per.g. Then the code repeatedly calls this
function, with different degrees of correlation as input, and collects the results.

library(rethinking)
data(milk)
d <- milk
sim.coll <- function( r=0.9 ) {
d$x <- rnorm( nrow(d) , mean=rx*d$perc.fat ,
sd=sqrt( (1-r72)*var(d$perc.fat) ) )
m <- Im( kcal.per.g ~ perc.fat + x , data=d )
sqrt( diag( vcov(m) ) )[2] # stddev of parameter
}
rep.sim.coll <- function( r=0.9 , n=100 ) {
stddev <- replicate( n , sim.coll(r) )
mean (stddev)
}
r.seq <- seq(from=0,to0=0.99,by=0.01)
stddev <- sapply( r.seq , function(z) rep.sim.coll(r=z,n=100) )
plot( stddev ~ r.seq , type="1" , col=rangi2, lwd=2 , xlab="correlation" )

So for each correlation value in r.seq, the code generates 100 regressions and returns the average
standard deviation from them. This code uses implicit flat priors, which are bad priors. So it does
exaggerate the effect of collinear variables. When you use informative priors, the inflation in standard
deviation can be much slower.

6.2. Post-treatment bias

It is routine to worry about mistaken inferences that arise from omitting predictor vari-
ables. Such mistakes are often called OMITTED VARIABLE BIAS, and the examples from the
previous chapter illustrate it. It is much less routine to worry about mistaken inferences aris-
ing from including variables that are consequences of other variables. We'll call this posT-
TREATMENT B1AS.2] Being aware of post-treatment bias is important in all types of studies.
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Carefully controlled experiments can be ruined just as easily as uncontrolled observational
studies. Blindly tossing variables into the causal salad is never a good idea, no matter how
the data were collected.

The language “post-treatment” comes in fact from thinking about experimental designs.
Suppose for example that you are growing some plants in a greenhouse. You want to know
the difference in growth under different anti-fungal soil treatments, because fungus on the
plants tends to reduce their growth. Plants are initially seeded and sprout. Their heights are
measured. Then different soil treatments are applied. Final measures are the height of the
plant and the presence of fungus. There are four variables of interest here: initial height, final
height, treatment, and presence of fungus. Final height is the outcome of interest. But which
of the other variables should be in the model? If your goal is to make a causal inference about
the treatment, you shouldn’t include the presence of fungus, because it is a post-treatment
effect.

Let’s simulate some data, to make the example more transparent and see what exactly
goes wrong when we include a post-treatment variable.

set.seed(71)
# number of plants
N <- 100

# simulate initial heights
ho <- rnorm(N,10,2)

# assign treatments and simulate fungus and growth
treatment <- rep( 0:1 , each=N/2 )

fungus <- rbinom( N , size=1 , prob=0.5 - treatmentx0.4 )
hl <- hO + rnorm(N, 5 - 3*fungus)

# compose a clean data frame
d <- data.frame( h6=h0 , hl=hl , treatment=treatment , fungus=fungus )
precis(d)

mean sd 5.5% 94.5% histogram
he 9.96 2.10 6.57 13.08 o Bmem
hi 14.40 2.69 10.62 17.93 =
treatment 0.50 0.50 0.00 1.00 [ | | |
fungus 0.23 0.42 0.00 1.00 N -

Now you should have a data frame d with the simulated plant experiment data.

6.2.1. A prior is born. When designing the model, it helps to pretend you don't have the
data generating process just above. In real research, you will not know the real data gener-
ating process. But you will have a lot of scientific information to guide model construction.
So let’s spend some time taking this mock analysis seriously.

We know that the plants at time t = 1 should be taller than at time ¢ = 0, whatever scale
they are measured on. So if we put the parameters on a scale of proportion of height at time
t = 0, rather than on the absolute scale of the data, we can set the priors more easily. To
make this simpler, let’s focus right now only on the height variables, ignoring the predictor
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variables. We might have a linear model like:

hy,; ~ Normal(p;, o)
Wi =hoi X p

where hy ; is plant i’s height at time t = 0, h ; is its height at time ¢ = 1, and p is a parameter
measuring the proportion of h ; that h ; is. More precisely, p = hy ;/ho ;. If p = 1, the plant
hasn’t changed at all from time t = 0 to time ¢ = 1. If p = 2, it has doubled in height. So
if we center our prior for p on 1, that implies an expectation of no change in height. That
is less than we know. But we should allow p to be less than 1, in case the experiment goes
horribly wrong and we kill all the plants. We also have to ensure that p > 0, because it is a
proportion. Back in Chapter § (page f.4.1.3), we used a Log-Normal distribution, because
it is always positive. Let’s use one again. If we use p ~ Log-Normal(0,0.25), the prior
distribution looks like:

sim_p <- rlnorm( le4 , 0 , 0.25 )
precis( data.frame(sim_p) )

'data.frame': 10000 obs. of 1 variables:
mean sd 5.5% 94.5% histogram

sim_p 1.03 0.26 0.67 1.48 _lla

So this prior expects anything from 40% shrinkage up to 50% growth. Let’s fit this model, so
you can see how it just measures the average growth in the experiment.

m6.6 <- quap(
alist(
hl ~ dnorm( mu , sigma ),
mu <- hOx*p,
p ~ dlnorm( 0 , 0.25 ),
sigma ~ dexp( 1 )
), data=d )
precis(mé6.6)

mean sd 5.5% 94.5%
p 1.43 0.02 1.40 1.45
sigma 1.79 0.13 1.59 1.99

About 40% growth, on average. Now to include the treatment and fungus variables. We'll
include both of them, following the notion that wed like to measure the impact of both the
treatment and the fungus itself. The parameters for these variables will also be on the pro-
portion scale. They will be changes in proportion growth. So were going to make a linear
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model of p now.

hy,; ~ Normal(y;, o)

pi = hoi X p

p=a+ prTi+ PBrFi

a ~ Log-Normal(0, 0.25)
Bt ~ Normal(0, 0.5)

Br ~ Normal(0, 0.5)

o ~ Exponential(1)

The proportion of growth p is now a function of the predictor variables. It looks like any
other linear model. The priors on the slopes are almost certainly too flat. They place 95% of
the prior mass between —1 (100% reduction) and +1 (100% increase) and two-thirds of the
prior mass between —0.5 and +0.5. After we finish this section, you may want to loop back
and try simulating from these priors. Here’s the code to approximate the posterior:

m6.7 <- quap(
alist(
hl ~ dnorm( mu , sigma ),
mu <- ho * p,
p <- a + btxtreatment + bf*fungus,
a ~ dlnorm( 0 , 0.2 ) ,
bt ~ dnorm( 0 , 0.5 ),
bf ~ dnorm( 0 , 0.5 ),
sigma ~ dexp( 1 )
), data=d )
precis(m6.7)

mean sd 5.5% 94.5%

a 1.48 0.02 1.44 1.52
bt 0.00 0.03 -0.05 0.05
bf -0.27 0.04 -0.33 -0.21
sigma 1.41 0.10 1.25 1.57

That a parameter is the same as p before. And it has nearly the same posterior. The marginal
posterior for bt, the effect of treatment, is solidly zero, with a tight interval. The treatment is
not associated with growth. The fungus seems to have hurt growth, however. Given that we
know the treatment matters, because we built the simulation that way, what happened here?

6.2.2. Blocked by consequence. The problem is that fungus is mostly a consequence of
treatment. This is to say that fungus is a post-treatment variable. So when we control
for fungus, the model is implicitly answering the question: Once we already know whether
or not a plant developed fungus, does soil treatment matter? The answer is “no,” because soil
treatment has its effects on growth through reducing fungus. But we actually want to know,
based on the design of the experiment, is the impact of treatment on growth. To measure
this properly, we should omit the post-treatment variable fungus. Here’s what the inference
looks like in that case:

R code
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m6.8 <- quap(
alist(
hl ~ dnorm( mu , sigma ),
mu <- ho * p,
p <- a + btxtreatment,
a ~ dlnorm( 0 , 0.2 ),
bt ~ dnorm( @ , 0.5 ),
sigma ~ dexp( 1)
), data=d )
precis(mé6.8)

mean sd 5.5% 94.5%
a 1.38 0.03 1.34 1.42
bt 0.08 0.03 0.03 0.14
sigma 1.75 0.12 1.55 1.94

Now the impact of treatment is clearly positive, as it should be. It makes sense to control
for pre-treatment differences, like the initial height ho, that might mask the causal influence
of treatment. But including post-treatment variables can actually mask the treatment itself.
This doesn't mean you don’t want the model that includes both treatment and fungus. The
fact that including fungus zeros the coeflicient for treatment suggests that the treatment
works for exactly the anticipated reasons. It tells us about mechanism. But a correct inference
about the treatment still depends upon omitting the post-treatment variable.

6.2.3. Fungus and d-separation. It helps to look at this problem in terms of a DAG. In this
case, I'll show you how to draw it using the dagitty R package, because we are going to use
that package now to do some graph analysis.

library(dagitty)
plant_dag <- dagitty( "dag {
H.e -> H_1
F->H_1
T->F
")
coordinates( plant_dag ) <- list( x=c(H_0=0,T=2,F=1.5,H_1=1) ,
y=c(H_0=0,T=0,F=0,H_1=0) )
drawdag( plant_dag )

Hp——————> Hi «— F <+— T

So the treatment T influences the presence of fungus F which influences plant height at time
1, H;. Plant height at time 1 is also influenced by plant height at time 0, Hy. Thats our
DAG. When we include F, the post-treatment effect, in the model, we end up blocking the
path from the treatment to the outcome. This is the DAG way of saying that learning the
treatment tells us nothing about the outcome, once we know the fungus status.

An even more DAG way to say this is that conditioning on F induces D-SEPARATION. The
“d” stands for directional® d-separation means that some variables on a directed graph are
independent of others. There is no path connecting them. In this case, H; is d-separated from
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T, but only when we condition on F. Conditioning on F effectively blocks the directed path
T — F — H;, making T'and H; independent (d-separated). In the previous chapter, you saw
the notation H; L T|F for this kind of statement, when we discussed implied CONDITIONAL
INDEPENDENCIES. Why does this happen? There is no information in T about H; that is not
also in F. So once we know F, learning T provides no additional information about H;. You
can query the implied conditional independencies for this DAG:

impliedConditionalIndependencies(plant_dag)

F _||_ Ho
HO _||_ T
H1 _||_ T | F

There are three. The third one is the focus of our discussion. But the other two implications
provide ways to test the DAG. What F Il Hjy and Hy 1L T say is that the original plant
height, Hy, should not be associated with the treatment T or fungus F, provided we do not
condition on anything.

Obviously the problem of post-treatment variables applies just as well to observational
studies as it does to experiments. But in experiments, it can be easier to tell which variables
are pre-treatment, like ho, and which are post-treatment, like fungus. In observational stud-
ies, it is harder to know. But there are some subtle traps in experiments as well.

For example, conditioning on a post-treatment variable can not only fool you into think-
ing the treatment doesn’t work. It can also fool you into thinking it does work. Consider the

DAG below:
Fe—

In this graph, the treatment T influences fungus F, but fungus doesn’t influence plant growth.
Maybe the plant species just isn’t bothered by this particular fungus. The new variable M is
moisture. It influences both H; and F. M is circled to indicate that it is unobserved. Any
unobserved common cause of H; and F will do—it doesn’t have to be moisture of course.
A regression of H; on T will show no association between the treatment and plant growth.
But if we include F in the model, suddenly there will be an association. Let’s try it. I'll just
modify the plant growth simulation so that fungus has no influence on growth, but moisture
M influences both H; and F:

Ho ——— H, T

set.seed(71)

N <- 1000

he <- rnorm(N,10,2)

treatment <- rep( 0:1 , each=N/2 )

M <- rbern(N)

fungus <- rbinom( N , size=1 , prob=0.5 - treatment*0.4 + 0.4xM )

hl <- h®@ + rnorm( N , 5 + 3*M )

d2 <- data.frame( h6=h0® , hl=hl , treatment=treatment , fungus=fungus )

R code
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Rerun the models from earlier, models m6.7 and m6. 8, using the data in d2 now. You'll see
that including fungus again confounds inference about the treatment, this time by making
it seem like it helped the plants, even though it had no effect.

This result is rather mysterious. Why should M have this effect? The next section is all
about effects like this.

Rethinking: Model selection doesn’t help. In the next chapter, you’ll learn about model selection
using information criteria. Like other model comparison and selection schemes, these criteria help in
contrasting and choosing model structure. But such approaches are no help in the example presented
just above, since the model that includes fungus both fits the sample better and would make better
out-of-sample predictions. Model m6. 7 misleads because it asks the wrong question, not because it
would make poor predictions. As argued in Chapter [[, prediction and causal inference are just not
the same task. No statistical procedure can substitute for scientific knowledge and attention to it. We
need multiple models because they help us understand causal paths, not just so we can choose one or
another for prediction.

6.3. Collider bias

At the start of the chapter, I argued that all that is necessary for scientific studies to
show a negative association between trustworthiness and newsworthiness is that selection
processes—grant and journal review—care about both. Now I want to explain how this same
selection phenomenon can happen inside a statistical model. When it does, it can seriously
distort our inferences, a phenomenon known as COLLIDER BIAS.

Let’s consider a DAG for this example. The model is that trustworthiness (T) and news-
worthiness (N) are statistically independent in the population research proposals submitted
to grant review panels. Both of them influence selection (S) for funding. This is the graph:

The fact that two arrows enter S means it is a COLLIDER. The core concept is easy to under-
stand: When you condition on a collider, it creates statistical —but not necessarily causal—
associations among its causes. In this case, once you learn that a proposal has been selected
(S), then learning its trustworthiness (T) also provides information about its newsworthiness
(N). Why? Because if, for example, a selected proposal has low trustworthiness, then it must
have high newsworthiness. Otherwise it wouldn't have been funded. The same works in re-
verse: If a proposal has low newsworthiness, wed infer that it must have higher than average
trustworthiness. Otherwise it would not have been selected for funding.

This is the informational phenomenon that generates the negative association between T
and N in the population of selected proposals. And it means we have to pay attention to pro-
cesses that select our sample of observations and may distort associations among variables.
But the same phenomenon will also generate a misleading association inside a statistical
model, when you include the collider as a predictor variable. If you are not careful, you can
make an erroneous causal inference. Let’s consider an extended example.

6.3.1. Collider of false sorrow. Consider the question of how aging influences happiness. If
we have a large survey of people rating how happy they are, is age associated with happiness?
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If so, is that association causal? Here, I want to show you how controlling for a plausible
confound of happiness can actually bias inference about the influence of age.®

Suppose, just to be provocative, that an individual’s average happiness is a trait that is
determined at birth and does not change with age. However, happiness does influence events
in one’s life. One of those events is marriage. Happier people are more likely to get married.
Another variable that causally influences marriage is age: The more years you are alive, the
more likely you are to eventually get married. Putting these three variables together, this is
the causal model:

Happiness (H) and age (A) both cause marriage (M). Marriage is therefore a collider. Even
though there is no causal association between happiness and age, if we condition on marriage—
which means here, if we include it as a predictor in a regression—then it will induce a statis-
tical association between age and happiness. And this can mislead us to think that happiness
changes with age, when in fact it is constant.

To convince you of this, let's do another simulation. Simulations are useful in these ex-
amples, because these are the only times when we know the true causal model. If a procedure
cannot figure out the truth in a simulated example, we shouldn't trust it in a real one. We're
going to do a fancier simulation this time, using an agent-based model of aging and marriage
to produce a simulated data set to use in a regression. Here is the simulation design:

(1) Each year, 20 people are born with uniformly distributed happiness values.

(2) Each year, each person ages one year. Happiness does not change.

(3) At age 18, individuals can become married. The odds of marriage each year are
proportional to an individual’s happiness.

(4) Once married, an individual remains married.

(5) After age 65, individuals leave the sample. (They move to Spain.)

I've written this algorithm into the rethinking package. You can run it out for 1000 years
and collect the resulting data:

library(rethinking) 6R§(ide
d <- sim_happiness( seed=1977 , N_years=1000 ) '
precis(d)

'data.frame': 1300 obs. of 3 variables:

mean sd 5.5% 94.5% histogram
age 33.0 18.77 4.00 62.00 HEEEEEEEEEEN
married 0.3 0.46 0.00 1.00 [ | -
happiness 0.0 1.21 -1.79 1.79 Enlianlsl

These data comprise 1300 people of all ages from birth to 65 years old. The variables corre-
spond to the variables in the DAG above, and the simulation itself obeys the DAG.

I've plotted these data in FIGURE .4, showing each individual as a point. Filled points
are married individuals. Age is on the horizontal, and happiness the vertical, with the hap-
piest individuals at the top. At age 18, they become able to marry, and then gradually more
individuals are married each year. So at older ages, more individuals are married. But at all
ages, the happiest individuals are more likely to be married.
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FIGURE 6.4. Simulated data, assuming that happiness is uniformly dis-
tributed and never changes. Each point is a person. Married individuals
are shown with filled blue points. At each age after 18, the happiest individ-
uals are more likely to be married. At later ages, more individuals tend to be
married. Marriage status is a collider of age and happiness: A — M « H.
If we condition on marriage in a regression, it will mislead us to believe that
happiness declines with age.

Suppose you come across these data and want to ask whether age is related to happiness.
You don’t know the true causal model. But you reason, reasonably, that marriage status
might be an important confound. If married people are more or less happy, on average, then
you need to condition on marriage status in order to infer the relationship between age and
happiness.

So let’s consider a multiple regression model aimed at inferring the influence of age on
happiness, while controlling for marriage status. This is just a plain multiple regression, like
the others in this and the previous chapter. The linear model is this:

Hi = Cyipli] + BadAi

where MID[i] is an index for the marriage status of individual i, with 1 meaning single and
2 meaning married. This is just the categorical variable strategy from Chapter . Its easier
to make priors, when we use multiple intercepts, one for each category, than when we use
indicator variables.

Now we should do our duty and think about the priors. Let’s consider the slope 34 first,
because how we scale the predictor A will determine the meaning of the intercept. We'll
focus only on the adult sample, those 18 or over. Imagine a very strong relationship between
age and happiness, such that happiness is at its maximum at age 18 and its minimum at age
65. It'll be easier if we rescale age so that the range from 18 to 65 is one unit. This will do it:

d2 <- d[ d$age>17 , ] # only adults
d2SA <- ( d2%age - 18 ) / ( 65 - 18 )
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Now this new variable A ranges from 0 to 1, where 0 is age 18 and 1 is age 65. Happiness
is on an arbitrary scale, in these data, from —2 to 4+2. So our imaginary strongest rela-
tionship, taking happiness from maximum to minimum, has a slope with rise over run of
(2 = (—2))/1 = 4. Remember that 95% of the mass of a normal distribution is contained
within 2 standard deviations. So if we set the standard deviation of the prior to half of 4, we
are saying that we expect 95% of plausible slopes to be less than maximally strong. That isn’t
a very strong prior, but again, it at least helps bound inference to realistic ranges. Now for
the intercepts. Each « is the value of y; when A; = 0. In this case, that means at age 18. So
we need to allow « to cover the full range of happiness scores. Normal(0, 1) will put 95% of
the mass in the —2 to +2 interval.

Finally, let’s approximate the posterior. We need to construct the marriage status index
variable, as well. I'll do that, and then immediate present the quap code.

d2$mid <- d2$married + 1 gggde
m6.9 <- quap(
alist(
happiness ~ dnorm( mu , sigma ),
mu <- a[mid] + bA*A,
a[mid] ~ dnorm( @ , 1 ),
bA ~ dnorm( 0 , 2 ),
sigma ~ dexp(l)
) , data=d2 )
precis(m6.9,depth=2)
mean sd 5.5% 94.5%
a[l] -0.23 0.06 -0.34 -0.13
a[2] 1.26 0.08 1.12 1.40
bA -0.75 0.11 -0.93 -0.57
sigma ©0.99 0.02 0.95 1.03
The model is quite sure that age is negatively associated with happiness. Wed like to compare
the inferences from this model to a model that omits marriage status. Here it is, followed by
a comparison of the marginal posterior distributions:
m6.10 <- quap( ggzde

alist(
happiness ~ dnorm( mu , sigma ),
mu <- a + bAxA,
a ~dnorm( @ , 1),
bA ~ dnorm( @ , 2 ),
sigma ~ dexp(1l)

) , data=d2 )

precis(m6.10)

mean sd 5.5% 94.5%
a 0.00 0.08 -0.12 0.12
bA 0.00 0.13 -0.21 0.21
sigma 1.21 0.03 1.17 1.26

This model, in contrast, finds no association between age and happiness.
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The pattern above is exactly what we should expect when we condition on a collider.
The collider is marriage status. It a common consequence of age and happiness. As a result,
when we condition on it, we induce a spurious association between the two causes. So it
looks like, to model m6. 9, that age is negatively associated with happiness. But this is just a
statistical association, not a causal association. Once we know whether someone is married
or not, then their age does provide information about how happy they are.

You can see this in FIGURE f.4. Consider only the blue points, the married people.
Among only the blue points, older individuals have lower average happiness. This is because
more people get marriage at time goes on, so the mean happiness among married people ap-
proaches the population average of zero. Now consider only the open points, the unmarried
people. Here it is also true that mean happiness declines with age. This is because happier
individuals migrate over time into the married sub-population. So in both the married and
unmarried sub-populations, there is a negative relationship between age and happiness. But
in neither sub-population does this accurately reflect causation.

It’s easy to plead with this example. Shouldn’t marriage also influence happiness? What
if happiness does change with age? But this misses the point. If you dont have a causal
model, you can’t make inferences from a multiple regression. And the regression itself does
not provide the evidence you need to justify a causal model. Instead, you need some science.

6.3.2. Thehaunted DAG. Collider biasarises from conditioning on acommon consequence,
as in the previous example. If we can just get our graph sorted, we can avoid it. But it isn’t
always so easy to see a potential collider, because there may be unmeasured causes. Unmea-
sured causes can still induce collider bias. So I'm sorry to say that we also have to consider
the possibility that our DAG may be haunted.

Suppose for example that we are interested in inferring the direct influence of both par-
ents (P) and grandparents (G) on the educational achievement of children (C).28 Since grand-
parents also presumably influence their own children’s education, there is an arrow G — P.
This sounds pretty easy, so far. It’s similar in structure to our divorce rate example from last
chapter:

G——P

C

But suppose there are unmeasured, common influences on parents and their children, such
as neighborhoods, that are not shared by grandparents (who live on the south coast of Spain
now). Then our DAG becomes haunted by the unobserved U:

G——»P

AN
©

e
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Now P is a common consequence of G and U, so if we condition on P, it will bias inference
about G — C, even if we never get to measure U. 1 don’t expect that fact to be immediately
obvious. So let’s crawl through a quantitative example.

First, let’s simulate 200 triads of grandparents, parents, and children. This simulation
will be simple. We'll just project our DAG as a series of implied functional relationships. The
DAG above implies that:

(1) Pissome function of Gand U
(2) Cissome function of G, P, and U
(3) G and U are not functions of any other known variables

We can make these implications into a simple simulation, using rnorm to generate simulated
observations. But to do this, we need to be a bit more precise than “some function of” So I'll
invent some strength of association:

N <- 200 # number of grandparent-parent-child triads
b_GP <- 1 # direct effect of G on P

b_GC <- 0 # direct effect of G on C

b_PC <- 1 # direct effect of P on C

b_U <- 2 # direct effect of U on P and C

These parameters are like slopes in a regression model. Notice that I've assumed that grand-
parents G have zero effect on their grandkids C. The example doesn’t depend upon that
effect being exactly zero, but it will make the lesson clearer. Now we use these slopes to draw
random observations:

set.seed(1)
U <= 2*rbern( N , 0.5 ) - 1
<= rnorm( N )
<= rnorm( N , b_GP*G + b_UxU )
rnorm( N , b_PCxP + b_GC*G + b_UxU )
<- data.frame( C=C , P=P , G=G , U=U )

o 0O UV o
N
|

I've made the neighborhood effect, U, binary. This will make the example easier to under-
stand. But the example doesn’t depend upon that assumption. The other lines are just linear
models embedded in rnorm.

Now what happens when we try to infer the influence of grandparents? Since some of
the total effect of grandparents passes through parents, we realize we need to control for
parents. Here is a simple regression of C on P and G. Normally I would advise standardizing
the variables, because it makes establishing sensible priors a lot easier. But 'm going to keep
the simulated data on its original scale, so you can see what happens to inference about the
slopes above. If we changed the scale, we shouldn't expect to get those values back. But if
we leave the scale alone, we should be able to recover something close to those values. So I
apologize for using vague priors here, just to push forward in the example.

m6.11 <- quap(
alist(
C ~ dnorm( mu , sigma ),
mu <- a + b_PCxP + b_GCxG,
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Parents in 45th to 60th centiles

FIGURE 6.5. Unobserved confounds and col-
lider bias. In this example, grandparents influ-
ence grandkids only indirectly, through par-
ents. However, unobserved neighborhood ef-
fects on parents and their children create the
illusion that grandparents harm their grand-
kids education. Parental education is a col-
lider: Once we condition on it, grandparental
bad neighborhoods education becomes negatively associated with
: ° : : : : grandchild education.
3 2 A 0 1 2
grandparent education (G)

1

0

-1

grandchild education (C)

-2
1

a ~dnorm( @ , 1),
c(b_PC,b_GC) ~ dnorm( ©@ , 1),
sigma ~ dexp( 1 )
), data=d )
precis(m6.11)

mean sd 5.5% 94.5%
a -0.12 0.10 -0.28 0.04
b_PC 1.79 0.04 1.72 1.86
b_GC -0.84 0.11 -1.01 -0.67
sigma 1.41 0.07 1.30 1.52

The inferred effect of parents looks too big, almost twice as large as it should be. That isn’t
surprising. Some of the correlation between P and Cis due to U, and the model doesn’t know
about U. That’s a simple confound. More surprising is that the model is confident that the
direct effect of grandparents is to hurt their grandkids. The regression is not wrong. But a
causal interpretation of that association would be.

How does collider bias arise in this case? Consider FIGURE p.5. Note that I did stan-
dardize the variables to make this plot. So the units on the axes are standard deviations. The
horizontal axis is grandparent education. The vertical is grandchild education. There are
two clouds of points. The blue cloud comprises children who live in good neighborhoods
(U = 1). The black cloud comprises children who live in bad neighborhoods (U = —1). No-
tice that both clouds of points show positive associations between G and C. More educated
grandparents have more educated grandkids, but this effect arises entirely through parents.
Why? Because we assumed it is so. The direct effect of G in the simulation is zero.

So how does the negative association arise, when we condition on parents? Conditioning
on parents is like looking within sub-populations of parents with similar education. So let’s
try that. In FIGURE p.5, I've highlighted in filled points those parents between the 45th and
60th centiles of education. There is nothing special of this range. It just makes the phenom-
enon easier to see. Now if we draw a regression line through only these points, regressing
C on G, the slope is negative. There is the negative association that our multiple regression
finds. But why does it exist?
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It exists because, once we know P, learning G invisibly tells us about the neighborhood
U, and U is associated with the outcome C. I know this is confusing. As I keep saying, if you
are confused, it is only because you are paying attention. So consider two different parents
with the same education level, say for example at the median 50th centile. One of these
parents has a highly educated grandparent. The other has a poorly educated grandparent.
The only probable way, in this example, for these parents to have the same education is if
they live in different types of neighborhoods. We can't see these neighborhood effects—we
haven’t measured them, recall—but the influence of neighborhood is still transmitted to the
children C. So for our mythical two parents with the same education, the one with the highly
educated grandparent ends up with a less well educated child. The one with the less educated
grandparent ends up with the better educated child. G predicts lower C.

The unmeasured U makes P a collider, and conditioning on P produces collider bias. So
what can we do about this? You have to measure U. Here’s the regression that conditions
also on U:

m6.12 <- quap(
alist(
C ~ dnorm( mu , sigma ),
mu <- a + b_PCxP + b_GCxG + b_Ux*U,
a ~dnorm( @ , 1),
c(b_PC,b_GC,b_U) ~ dnorm( 6 , 1),
sigma ~ dexp( 1 )
), data=d )
precis(m6.12)

mean sd 5.5% 94.5%

a -0.12 0.07 -0.24 -0.01
b_PC 1.01 0.07 ©0.91 1.12
b_GC -0.04 0.10 -0.20 0.11
b_U 2.00 0.15 1.76 2.23

sigma 1.02 0.05 0.94 1.10

And those are the slopes we simulated with.

Rethinking: Statistical paradoxes and causal explanations. The grandparents example serves as
an example of SIMPSON’s PARADOX: Including another predictor (P in this case) can reverse the
direction of association between some other predictor (G) and the outcome (C). Usually, Simpson’s
paradox is presented in cases where adding the new predictor helps us. But in this case, it misleads
us. Simpson’s paradox is a statistical phenomenon. To know whether the reversal of the association
correctly reflects causation, we need something more than just a statistical model. 2%

6.4. Confronting confounding

In this chapter and in the previous one, there have been several examples of how we can
use multiple regression to deal with confounding. But we have also seen how multiple regres-
sion can cause confounding—controlling for the wrong variables ruins inference. Hopefully
I have succeeded in scaring you aware from just adding everything to a model and hoping
regression will sort it out, as well as inspired you to believe that effective inference is possible,
if we are careful enough and knowledgable enough.
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But which principles explain why sometimes leaving out variables and sometimes adding
them can produce the same phenomenon? Are there other causal monsters lurking out there,
haunting our graphs? We require some coherence.

Let’s define CONFOUNDING as any context in which the association between an outcome
Y and a predictor of interest X is not the same as it would be, if we had experimentally deter-
mined the values of X.22 For example, suppose we are interested in the association between
education E and wages W. The problem is that in a typical population there are many un-
observed variables U that influence both E and W. Examples include where a person lives,
who their parents are, and who their friends are. This is what the DAG looks like:

u

7N

E > W

If we regress W on E, the estimate of the causal effect will be confounded by U. It is con-
founded, because there are two paths connecting Eand W: (1) E — Wand (2) E <~ U — W.
A “path” here just means any series of variables you could walk through to get from one vari-
able to another, ignoring the directions of the arrows. Both of these paths create a statistical
association between E and W. But only the first path is causal. The second path is non-causal.
Why? Because if only the second path existed, and we changed E, it would not change W.
Any causal influence of E on W operates only on the first path.

How can we isolate the causal path? The most famous solution is to run an experiment.
If we could assign education levels at random, it changes the graph:

u

\

E > W

Manipulation removes the influence of U on E. The unobserved variables do not influence
education when we ourselves determine education. With the influence of U removed from
E, this then removes the path E <~ U — W. It blocks the second path. Once the path is
blocked, there is only one way for information to go between E and W, and then measuring
the association between E and W would yield a useful measure of causal influence. Manipu-
lation removes the confounding, because it blocks the other path between E and W.

Luckily, there are statistical ways to achieve the same result, without actually manipulat-
ing E. How? The most obvious is to add U to the model, to condition on U. Why does this
also remove the confounding? Because it also blocks the flow of information between E and
W through U. It blocks the second path.

To understand why conditioning on Ublocks the path E <— U — W, think of this path in
isolation, as a complete model. Once you learn U, also learning E will give you no additional
information about W. Suppose for example that U is the average wealth in a region. Regions
with high wealth have better schools, resulting in more education E, as well as better paying
jobs, resulting in higher wages W. If you don’t know the region a person lives in, learning
the person’s education E will provide information about their wages W, because E and W are
correlated across regions. But after you learn which region a person lives in, assuming there
is no other path between E and W, then learning E tells you nothing about W. This is the
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The Fork The Pipe The Collider The Descendant
X

NSO SN /N

Y

FIGURE 6.6. The four elemental confounds. Any directed acyclic graph is
built from these elementary relationships.

sense in which condition on U blocks the path—it makes E and W independent, conditional
on U.

6.4.1. Shutting the backdoor. Blocking all confounding paths between some predictor X
and some outcome Y is known as shutting the BACKDOOR. The metaphor in play is that we
don’t want any spurious correlation sneaking in through a non-causal path, which is one that
enters the back of the predictor X. In the example above, the path E <— U — W is a backdoor
path, because it enters E with an arrow and also connects E to W. This path is confounding.
Now for some good news. Given a causal DAG, it is always possible to say which, if any,
variables one must control for in order to shut all the backdoor paths. It is also possible to
say which variables one must not control for, in order to leave the path of interest open.

And—some more good news—there are only four types of variable relations that com-
bine to form all possible paths. So you really only need to understand four things and how
information flows in each of them. I'll define the four types of relations. Then we’ll work
through some examples.

FIGURE .6 shows DAGs for each elemental relation. Every DAG, no matter how big and
complicated, is built out of these four relations. Let’s consider each, going left to right.

(1) The first type of relation is the one we worked with just above, a FORK: X <— Z — Y.
This is the classic confounder. In a fork, some variable Z is a common cause of X
and Y, generating a correlation between them. If we condition on Z, then learning
X tells us nothing about Y. X and Y are independent, conditional on Z.

(2) The second type of relation is a PIPE: X — Z — Y. We saw this when we discussed
the plant growth example and post-treatment bias: The treatment X influences fun-
gus Z which influences growth Y. If we condition on Z now, we also block the path
from X to Y. So in both a fork and a pipe, conditioning of the middle variable
blocks the path.

(3) The third type of relation is a COLLIDER: X — Z <« Y. You met colliders earlier
in this chapter. Unlike the other two types of relations, in a collider there is no
association between X and Y unless you condition on Z. Conditioning on Z, the
collider variable, opens the path. Once the path is open, information flows between
XandY.

(4) The fourth bit of knowledge you need is that conditioning on a DESCENDENT vari-
able is like conditioning on the variable itself, but weaker. A descendent is a variable
influenced by another variable. In the far right DAG in FIGURE .6, controlling for
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D will also control, to a lesser extent, for Z. The reason is that D has some informa-
tion about Z. This will (partially) open the path from X to Y, because Z is a collider.
The same holds for non-colliders. If you condition on a descendent of Z in the pipe,
it'll still be like (weakly) closing the pipe.

No matter how complicated a causal DAG appears, it is always built out of these four
types of relations. And since you know how to open and close each, you (or your computer)
can figure out which variables you need to control—or not—in order to shut the backdoor.
Here’s the recipe:

(1) List all of the paths connecting X (the potential cause of interest) and Y (the out-
come).

(2) Classify each path by whether it is open or closed. A path is open unless it contains
a collider.

(3) Classify each path by whether it is a backdoor path. A backdoor path has an arrow
entering X.

(4) If there are any backdoor paths that are also open, decide which variable(s) to con-
dition on to close it.

Let’s consider some examples.

6.4.2. Tworoads. The DAG below contains an exposure of interest X, an outcome of interest
Y, an unobserved variable U, and three observed covariates (A, B, and C).

"
@\B

|

X

v

We are interested in the blue path, the causal effect of X on Y. Which of the observed covari-
ates do we need to add to the model, in order to correctly infer it? To figure this out, look
for backdoor paths. Aside from the direct path, there are two paths from X to Y:

1) X« U+~A—>C—Y
2) X« U—-B«+C—Y

These are both backdoor paths that could confound inference. Now ask which of these paths
is open. If a backdoor path is open, then we must close it. If a backdoor path is closed already,
then we must not accidentally open it and create a confound.

Consider the first path, passing through A. This path is open, because there is no collider
within it. There is just a fork at the top and two pipes, one on each side. Information will
flow through this path, confounding X — Y. It is a backdoor. To shut this backdoor, we
need to condition on one of its variables. We can’t condition on U, since it is unobserved.
That leaves A or C. Either will shut the backdoor. You can ask your computer to reproduce
this analysis, to analyze the graph and find the necessary variables to control for in order to
block the backdoor. The dagitty R package provides adjustmentSets for this purpose:

library(dagitty)
dag_6.1 <- dagitty( "dag {
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U [unobserved]

X =>Y
X<-U<K-A->C—>Y
U->B<-2C

M)

adjustmentSets( dag_6.1 , exposure="X" , outcome="Y" )

{c}
{A}
Conditioning on either C or A would suffice. Conditioning on C is the better idea, from
the perspective of efficiency, since it could also help with the precision of the estimate of
X — Y. Notice that conditioning on U would also work. But since we told dagitty that U
is unobserved (see the code above), it didn’t suggest it in the adjustment sets.
Now consider the second path, passing through B. This path does contain a collider, U —
B < C. It is therefore already closed. It is not a backdoor, and that is why adjustmentSets
above did not mention B. You don’t need to control for B. But if we do condition on B, it is not
harmless. It will open the path, creating a confound. Then our inference about X — Y will
change, but without the DAG, we won’t know whether that change is helping us or rather
misleading us. The fact that including a variable changes the X — Y coefficient does not
always mean that the coeflicient is better now. You could have just conditioned on a collider.

6.4.3. Backdoor waffles. Asa final example, let’s return to the Waffle House and divorce rate
correlation from the introduction to Chapter f. We’ll make a DAG, use it to find a minimal
set of covariates, and use it as well to derive the testable implications of the DAG. This is
important, because sometimes you really can test whether your DAG is consistent with the
evidence. The data alone can never tell us when a DAG is right. But the data can tell us when
a DAG is wrong.

We're interested in the total causal effect of the number of Waffle Houses on divorce rate
in each State. Presumably, the naive correlation between these two variables is spurious.
What is the minimal adjustment set that will block backdoor paths from Waffle House to
divorce? Let’s make a graph:

S,

>
>

In this graph, S is whether or not a State is in the southern United States, A is median age
at marriage, M is marriage rate, W is number of Waffle Houses, and D is divorce rate. This
graph assumes that southern States have lower ages of marriage (S — A), higher rates of
marriage both directly (§ — M) and mediated through age of marriage (S -+ A — M), as
well as more waftles (S — W). Age of marriage and marriage rate both influence divorce.
There are three open backdoor paths between W and D. Just trace backwards, starting
at W and ending up at D. But notice that all of them pass first through S. So we can close
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them all by conditioning on S. That’s all there is to it. You can get your computer to confirm
this answer:

library(dagitty)

dag_6.2 <- dagitty( "dag {
A ->D

A M ->D

A<-S ->M

S W -> D

M)

adjustmentSets( dag_6.2 , exposure="W" , outcome="D" )

{A, M}

{s}
We could control for either A and M or for S alone. If you don’'t have to add something to
the model, then don't.

This DAG is obviously not satisfactory—it assumes there are no unobserved confounds,
which is very unlikely for this sort of data. But we can still learn something by analyzing
it. While the data cannot tell us whether a graph is correct, it can sometimes suggest how a
graph is wrong. Earlier in chapter, we discussed CONDITIONAL INDEPENDENCIES, which are
some of a model’s testable implications. Condition independencies are pairs of variables that
are not associated, once we condition on some set of other variables. By listing these implied
conditional independencies and assessing each, we can at least test some of the features of a
graph.

Now that you know the elemental confounds, you are ready to derive any DAG’s con-
ditional independencies on your own. You can find conditional independencies using the
same path logic you learned for finding and closing backdoors. You just have to focus on a
pair of variables, find all paths connecting them, and figure out if there is any set of variables
you could condition on to close them all. In a large graph, this is quite a chore, because there
are many pairs of variables and possibly many paths. But your computer is good at such
chores. In this case, there are three implied conditional independencies:

impliedConditionalIndependencies( dag_6.2 )

A_ll_w]|S
D _||_S | A, M, W
M _||_W]S

Read the first as “median age of marriage should be independent of (_| | _) Waffle Houses,
conditioning on (|) a State being in the south” In the second, divorce and being in the
south should be independent when we simultaneously condition on all of median age of
marriage, marriage rate, and Waffle Houses. Finally, marriage rate and Waffle Houses should
be independent, conditioning on being in the south.

In the problems at the end of this chapter, I'll ask you to evaluate these implications, as
well as try to assess the causal influence of Waffle Houses on divorce.

Rethinking: DAGs are not enough. If you don’t have a real, mechanistic model of your system, DAGs
are fantastic tools. If nothing else, they caution against the commonplace approach of using multiple
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regression as a substitute for theory. But DAGs are not a destination. Once you have a dynamical
model of your system, you don’t need a DAG. In fact, many dynamical systems cannot be usefully
represented by DAGs, because they have complex behavior that is sensitive to initial conditions. But
these models can still be analyzed and causal interventions designed from them. The fact that DAGs
are not useful for everything is no argument against them. All theory tools have limitations. I have
yet to see a better tool than DAGs for teaching the mechanics of and obstacles to causal inference.

Overthinking: A smooth operator. To define confounding with precise notation, we need to adopt
something called the po-oPERATOR.E Confounding occurs when:

Pr(Y|X) # Pr(Y|do(X))

That do(X) means to cut all of the backdoor paths into X, as if we did a manipulative experiment. The
do-operator changes the graph, closing the backdoors. The do-operator defines a causal relationship,
because Pr(Y|do(X)) tells us the expected result of manipulating X on Y, given a causal graph. We
might say that some variable X is a cause of Y when Pr(Y|do(X)) > Pr(Y|do(not-X)). The ordinary
conditional probability comparison, Pr(Y|X) > Pr(Y|not-X), is not the same. It does not close the
backdoor. Note that what the do-operator gives you is not just the direct causal effect. It is the total
causal effect through all forward paths. To get a direct causal effect, you might have to close more
doors. The do-operator can also be used to derive causal inference strategies even when some back
doors cannot be closed. We'll look at a couple in a later chapter.

6.5. Summary

Multiple regression is no oracle. It is logical, but the relationships it describes are condi-
tional associations, not causal influences. Therefore additional information, from outside the
model, is needed to make sense of it. This chapter presented introductory examples of some
common frustrations: multicollinearity, post-treatment bias, and collider bias. Solutions
to these frustrations can be organized under a coherent framework in which hypothetical
causal relations among variables are analyzed to locate and cope with confounding. In all
cases, causal models exist outside the statistical model and can be difficult to test. However,
it is possible to reach valid causal inferences in the absence of experiments. This is good
news, because we often cannot perform experiments, both for practical and ethical reasons.

6.6. Practice
Easy. x
Medium.
6M1. Modify the DAG on page [[90 to include the variable V, an unobserved cause of C and Y:
C <— V — Y. Reanalyze the DAG. How many paths connect X to Y? Which must be closed? Which
variables should you condition on now?

Hard.

6H1. Use the Waffle House data, data(WaffleDivorce), to find the total causal influence of num-
ber of Waffle Houses on divorce rate. Justify your model or models with a causal graph.
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6H2. Build a series of models to test the implied conditional independencies of the causal graph
you used in the previous problem. If any of the tests fail, how do you think the graph needs to be
amended? Does the graph need more or fewer arrows? Feel free to nominate variables that aren’t in
the data.

6H3. x



