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Abstract

1. Factorial analysis of variance (anova) with unbalanced (non-orthogonal) data is a common-

place but controversial and poorly understood topic in applied statistics.

2. We explain that anova calculates the sum of squares for each term in the model formula sequen-

tially (type I sums of squares) and show how anova tables of adjusted sums of squares are composite

tables assembled from multiple sequential analyses. A different anova is performed for each

explanatory variable or interaction so that each term is placed last in the model formula in turn

and adjusted for the others.

3. The sum of squares for each term in the analysis can be calculated after adjusting only for the

main effects of other explanatory variables (type II sums of squares) or, controversially, for both

main effects and interactions (type III sums of squares).

4. We summarize the main recent developments and emphasize the shift away from the search for

the ‘right’ anova table in favour of presenting one or more models that best suit the objectives of

the analysis.
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Introduction

Analysis of variance (anova) continues to be one of the most

widely used forms of statistical analysis in many areas of sci-

ence (Gelman 2005; Gelman & Hill 2007). Nevertheless, fac-

torial anova with unbalanced (non-orthogonal, Appendix S1)

data is a controversial topic in applied statistics and one of

the areas of anova that is most poorly understood in ecology,

evolution and environmental science. This is partly because

biostatistics textbooks appear to avoid the topic, perhaps

because it is controversial. The last coverage of the topic in

the ecology and evolution journals revealed disagreement on

how to best approach anova of unbalanced data (Shaw &

Mitchell-Olds 1993; Stewart-Oaten 1995). There still appears

to be no consensus within the statistical community, but there

has been further discussion that has yet to make its way into

the ecology and evolution literature. There has also been a

move away from finding the ‘right’ anova table towards pre-

senting the one ormore models that best match the objectives

of the analysis.

In this study, we give non-technical explanations of the

issues involved in anova of unbalanced data, particularly the

different types of adjusted sums of squares. We also provide

(as Supporting Information) code for the analysis of worked

examples of unbalanced anova designs using the open-source

r language for statistical computing and graphics that is

fast becoming the lingua franca for analysis in ecology and

evolution (RDevelopment Core Team, 2009).

The problem

With balanced designs, one factor can be held constant

whereas the other is varied independently. However, this

desirable property of orthogonality is usually lost for unbal-

anced designs (Appendix S1). When explanatory variables

are correlated with each other due to imbalance in the num-

ber of replicates for different treatment combinations, the

values of the sums of squares depend on the position of the

factors in the anova model formula. Because anova and

regression are special cases of general linear models, there is

much overlap between this topic and multiple regression. In

non-orthogonal designs, some of the explanatory variables

(and, if present, their interactions) are positively or negatively

correlated with each other; that is they are partially collinear

or confounded. Using a Venn diagram (Fig. 1), positive

correlations can be illustrated as causing overlapping

and negative correlations underlapping sums of squares

respectively. The desire to find a technological fix that

provides a single outcome to the analysis of orthogonal and

non-orthogonal data is clear. In response, some statistical

software companies have developed several types of adjusted

sums of squares.*Correspondence author. E-mail: ahector@uwinst.uzh.ch
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Sequential and adjusted sumsof squares

The sums of squares used in anova as originally proposed by

Fisher (1925) are calculated sequentially for each main effect

and each two-way or higher-order interaction following the

sequence of terms at each level in the model formula. One

desirable feature of sequential sums of squares is that they

are additive; that is the total sum of squares is decomposed

into a series of additive parts. The total sum of squares for a

sequential anova is the same for all orderings of the explana-

tory variables in the model formula, even though the values

for the individual variables change with their position in the

sequence.

The alternative to sequential sums of squares is to use one

of a variety of adjusted (also known as partial, unique, mar-

ginal, conditional or unweighted) sums of squares. These

adjusted sums of squares are sometimes linked to early work

by Yates (1933, 1934) as discussed by Nelder & Lane (1995)

and summarized in the Appendix S2. Adjusted sums of

squares can be divided into two categories (Herr 1986; Mac-

naughton 1998). As the name implies, adjusted sums of

squares are calculated for a given explanatory variable after

adjusting for the other variables in the statistical model for-

mula. The different systems of adjusted sums of squares can

then be categorized as to whether they adjust a given variable

for the other variables at the same level (e.g. adjusting each

main effect for the other main effects) or whether the adjust-

ment also includes interactions at higher levels.Macnaughton

(1998) has termed these ‘higher-level terms omitted (HTO)’

and ‘higher-level terms included (HTI)’, whereas Herr (1986)

termed them ‘each adjusted for other (EAD)’ and ‘standard

parametric (STP)’. Other terminologies exist (Appendix S2)

butwe findMacnaughton’s themost transparent.

In the following section, we express these two general clas-

ses more formally and illustrate them using a simple worked

example of a two-way factorial anova (this is the design used

in most discussions of this topic in the statistical literature).

To build on earlier literature on this topic, we use the hypo-

thetical data set from Shaw &Mitchell-Olds (1993). The data

set (Table 1) comprises height of experimental target organ-

isms as the response variable, the experimental removal (or

not) of neighbours as a first explanatory factor and the initial

size of the target organisms as a second factor. Both factors

have two levels because initial sizes are recorded only as two

classes (small or large). The design is therefore a fully facto-

rial 22 design: that is two factors – each with two levels –

crossed so that all four possible combinations (or ‘cells’ in a

tabular representation of the design) are present. The design

Fig. 1. Venn diagram illustration of sums of

squares partitioning for non-orthogonal

factors A and B (without interaction) using

different sequential anova models (a–d).

Only the sums of squares for the main effects

of A andB are illustrated (the total and error

sums of squares are not shown).
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is unbalanced because the different combinations have differ-

ent numbers of replicates but no cells are empty (a more

extreme form of imbalance). Furthermore, because the pro-

portional number of replicates is not the same across treat-

ments, the design is non-orthogonal; the two explanatory

variables are not independent of each other.

Sequential sumsof squares

The design can be analysed with a two-way factorial anova

that considers themaineffectsof theneighbour-removal treat-

ment, the initial size class and their interaction. Due to the

imbalance, the sums of squares for the main effects of the two

variables change with the two alternative sequential model

formulas,which canbewrittenusing the effects notationas:

yijk ¼ lþ ai þ bj þ cij þ eijk eqn 1

yijk ¼ lþ bj þ ai þ cij þ eijk eqn 2

where yijk is the response (final height) of the kth organism

(k = 1,2,…, nij), in the ith level of factor a (the neighbour-

removal treatment), and the jth level of factor b (initial size),

c is the interaction of the two treatments, l indicates the

intercept (here the grand mean; Appendix S3) and e the

within-group error. These two models can be written in the

widely used statistical model formula notation of Wilkinson

&Rogers (1973) as follows:

T + S + T�S eqn 3

S + T + T�S eqn 4

where T is the neighbour-removal treatment, S the initial

plant size and TÆS the interaction (which could be equiva-

lently written as SÆT). The intercept is taken as implicit in this

notation. The model with treatment fitted first produces the

sequential anova shown in Table 2a and the model with ini-

tial size fitted first produces Table 2b.

Note that in the two sequential models, the values for

the interaction, residual error and total sum of squares

are the same, despite differences for the main effects.

These differences in the main effect sums of squares arise

because treatment and initial size are not orthogonal.

When treatment is fitted before size, treatment is not sig-

nificant and initial size is highly significant. But when the

order is reversed and initial size is put first, its sum of

squares is reduced (although it remains highly significant)

and the sum of squares for treatment is increased so that

it borders on being significant too (Table 2). The change

of the treatment effect from convincingly non-significant

to marginal makes clear the dangers of sequential sums

of squares: fitting only one of these models could give an

incomplete and potentially misleading impression. The

complexity of sequential sums of squares is also clear: we

have had to fit two models instead of one (for more

complex models the numbers of alternatives increases

dramatically). Is one correct and the other wrong? Or,

are both correct but one preferred over the other?

Adjusted sumsof squareswith higher-level
terms omitted

The higher-level terms omitted adjusted sum of squares for

the interaction can be written in either of the two following

ways:

SS(T�Sjlþ T + S) eqn 5

SS(T�Sjlþ S + TÞ eqn 6

that is, the sum of squares for the interaction conditional on

(or adjusted for) all the lower-order terms: the grand mean,

the main effects of both neighbour-removal treatment and

initial size. The order of the main effects does not matter as

their combined value is the same and therefore the sums of

squares for the interaction is also the same with either

Table 1. Hypothetical example data (n = 11) reproduced from

Shaw&Mitchell-Olds (1993)

Treatment:

Initial size class

Control

(no removal)

Removal

(of neighbours)

Marginal

means

Small 50 57

Small 57 71 [62Æ25]
Small – 85

Small – –

Cell means [53Æ5] [71Æ0]
Large 91 105

Large 94 120 [108Æ87]
Large 102 –

Large 110 –

Cell means [99Æ25] [112Æ5]
Marginal means [76Æ37] [91Æ75]

The response variable, study organism final size (height), is cross-

classified by experimental treatment (experimental removal or not of

neighbours) and initial target organism size (small or large).Mar-

ginalmeans and cell means are given in square brackets. Note that to

make the degree of imbalance clearer, we have indicatedmissing val-

ues (–) for all treatment combinations with less than four values (the

maximum observed for any combination in the original data set). In

Appendix S6we discuss the analysis of an artificial balanced (4 · 4)

data set that could be formed by replacing themissing values in each

treatment combination with the relevant cell mean.

Table 2. The two alternative sequential anovas for the example data

Source d.f. SS MS F P

(a)

Treatment 1 35Æ3 35Æ3 0Æ33 0Æ58315
Size 1 4846Æ0 4846Æ0 45Æ37 0Æ00027
Interaction 1 11Æ4 11Æ4 0Æ11 0Æ75338
Residual 7 747Æ8 106Æ8
Total 10 5640Æ5 564Æ1
(b)

Size 1 4291Æ2 4291Æ2 40Æ17 0Æ00039
Treatment 1 590Æ2 590Æ2 5Æ52 0Æ05105
Interaction 1 11Æ4 11Æ4 0Æ11 0Æ75338
Residual 7 747Æ8 106Æ8
Total 10 5640Æ5 564Æ1
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formulation. Similarly, the higher-level terms omitted

adjusted sum of squares for treatment (T) and for initial size

(S) can be written respectively as:

SS(Tjlþ SÞ eqn 7

SS(Sjlþ TÞ eqn 8

The different models considered above (we require only

eqn 5 or 6, not both) can be written in the Wilkinson &

Rogers’ notation respectively as:

T + S + T�S eqn 9

S + T eqn 10

T + S eqn 11

Model 9, for example, can be said to fit the effect of T

ignoring S and then the effect of S eliminating T (McCul-

lagh & Nelder 1989). That is, for every variable in a

sequential model formula, preceding variables are said to

be eliminated and subsequent variables ignored. The ano-

va tables for these three sequential analyses are shown in

Table 3a–c. A composite anova table summarizing these

adjusted sums of squares can be assembled from these

three separate sequential models as follows. Equations 6–

8 each specify adjusted sum of squares for a single term

(TÆS, T and S respectively). To get these adjusted sums

of squares we fit models 9–11 (Table 3a–c). In each case,

we take only the sum of squares for the final term

(excluding the residual error, which is the same in all

cases) and use these to build the composite anova table

of adjusted sums of squares (Table 3d). Note that the

residual sums of squares are the same in both cases

(Table 3a,d) and that if we add up the adjusted sums of

squares in the composite table, the value is different from

the total of the sums of squares given by the equivalent

sequential anova shown in Table 3a. For this example,

the total sum of squares of the adjusted analysis is larger

than that of the sequential analysis (some double count-

ing has occurred). The opposite also frequently occurs

when sums of squares are missing due to the correlation

between variables. In the terminology of the sas software

package (SAS Institute Inc. 1985), this composite anova

table uses type II sums of squares (Appendix S4). That

is, sas type II sums of squares are adjusted sums of

squares that omit higher-level terms when making the

adjustments.

Adjusted sums of squares with higher-level
terms included

For sums of squares that adjust for higher-level terms, the

equations given above can be amended by including the inter-

action:

SS(T�Sjlþ T + SÞ eqn 12

SS(Tjlþ S +T�SÞ eqn 13

SS(Sjlþ T +T�SÞ eqn 14

Because the highest-level term is not affected, model 12 is

the same as the earlier model 5. These models can be written

in theWilkinson &Rogers’ notation respectively as:

T + S + T�S eqn 15

T� S + S + T eqn 16

T�S + T + S eqn 17

Note also that model 15 is the same as the earlier model 5.

The last two models, where a main effect is adjusted for the

other main effect and the interaction, may look strange to the

users of software who only use sequential sums of squares. In

such packages (e.g. GenStat, glim and the base distribution of

r used here), attempts to fit models like 16 and 17) will not

produce adjusted sums of squares and we must mimic the

adjustments that are made behind the scenes by other pack-

ages (Appendix S5). Once models 15–17 have been fitted to

produce the sequential anovas shown in Table 4a–c, the final

term (again excluding the residual error, which is the same in

all cases) from each sequential model is taken to form the

composite table of adjusted sums of squares (Table 4d). Note

that the higher-terms-included adjusted sums of squares for

the main effects differ from the higher-terms-omitted

adjusted sums of squares because each main effect is now

adjusted for the other and the interaction. Adjusting for the

Table 3. Higher-terms-omitted adjusted sums of squares (sas type

II); sequential models that produce adjusted sums of squares for the

(a) interaction, (b) main effect of treatment and (c) main effect of

initial size are shown with (d) the composite table of adjusted sums of

squares

Source d.f. SS MS F P

(a)

Treatment 1 35Æ3 35Æ3 0Æ33 0Æ5831
Size 1 4846Æ0 4846Æ0 45Æ37 0Æ0003
Interaction 1 11Æ4 11Æ4 0Æ11 0Æ7534
Residual 7 747Æ8 106Æ8
Total 10 5640Æ5 564Æ1
(b)

Size 1 4291Æ2 4291Æ2 45Æ22 0Æ0001
Treatment 1 590Æ2 590Æ2 6Æ22 0Æ0373
Residual 8 759Æ2 94Æ9
Total 10 5640Æ5 564Æ1
(c)

Treatment 1 35Æ3 35Æ3 0Æ37 0Æ5586
Size 1 4846Æ0 4846Æ0 51Æ07 0Æ0001
Residual 8 759Æ2 94Æ9
Total 10 5640Æ5 564Æ1
(d)

Treatment 1 590Æ2 590Æ2 6Æ2 0Æ0373
Size 1 4846Æ0 4846Æ0 51Æ1 0Æ0001
Interaction 1 11Æ4 11Æ4 0Æ1 0Æ7534
Residual 7 747Æ8 94Æ9
Adjusted total 10 6195Æ4
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interaction changes the pattern of correlations. In the sas ter-

minology, these higher-terms-included sums of squares are

type III sums of squares. That is, sas type III sums of squares

are adjusted sums of squares that include higher-level terms

whenmaking adjustments.

Having seen how the four alternative anova tables are pro-

duced (Tables 2a,b, 3d and 4d), we next look at their advan-

tages and disadvantages. First, the good news: in all four

cases, the sums of squares for the residual error and for the

interaction term are the same. This means that when the

result of an analysis is an interaction that is clearly significant

(both statistically and biologically), the type of sum of

squares used becomes of little relevance because the interac-

tion is the central result and it is unaffected by the type of

sum of squares. Once an interaction is significant, the main

effects of the variables involved are usually of little interest

(unless the sums of squares for the main effects are much

greater than the interaction sum of squares). This is because a

clear interaction tells us that both variables are important but

that the effect of each depends on the other. To look at the

main effect of a factor is to look at its effect averaged over the

levels of the other factor, something that would normally be

misleading when there is an appreciable interactive effect.

The bad news is that the values for the main effects differ

for the two alternative sequential analyses and for the two

different types of adjusted sums of squares. The sums of

squares for the two main effects in the pair of sequential ano-

vas differ because of their non-orthogonality. The sums of

squares for the main effects for the two types of adjusted

sums of squares differ because, in one case, they are adjusted

for the other main effect only and, in the other case, they are

adjusted for the other main effect and the interaction term.

The next section reviews the heated debate over sequential

and adjusted sums of squares and the arguments for and

against the different types.

The case for higher-level terms included
adjusted sums of squares

What led so many software packages to adopt higher-terms-

included adjusted sums of squares as the default option? Part

of the reason is probably a hang over from the early days of

computing when analyses had to be programmed using

punch cards and were usually carried out in batch mode

because interactive analyses that comparemultiple sequential

models were too laborious (Nelder 1994; Nelder & Lane

1995). When computer power was limiting, the desire for

software that produced the (single) answer is understandable

(see the quote from Herr given in Appendix S2). However,

the arguments in favour of adjusted sums of squares go

beyond this. Based on some of the statistical literature, Shaw

&Mitchell-Olds (1993) recommended them because,

The Type III sum of squares for each main effect is the

sum of the squared differences of unweighted marginal

means … [that] do not, therefore, depend on the details of

the sampling structure in the data at hand … [and] Type

III tests of the various factors in the model do not depend

on the particular order in themodel.

Quinn & Keough (2002) recommend them for similar rea-

sons because, ‘most biologists would probably prefer their

hypotheses to be independent of the cell sample sizes’. In a

sense, higher-terms-included adjusted sums of squares can be

thought of as testing variables in unbalanced datasets as if

those data sets were actually balanced and orthogonal (see

Appendix S6). The recommendations from biostatistics

sources given above are based on similar recommendations

in some of the statistical literature (albeit with important

caveats). For example, Searle (1995) comments that,

for all-cells-filled data, when wanting to use hypothesis

testing with models that include interactions, the careful

use of Type III sums of squares is the best we can do. True,

hypothesis testing may not be the best thing to do, and

true, also, is the fact that hypotheses … [may] … have

interactions secreted within them.

The question then becomes whether or not it makes sense

to test hypotheses about main effects in the presence of inter-

actions.

Another potential argument in favour of anova using type

III sums of squares is that, for single degree of freedom tests

(i.e. continuous variables and factors with two levels), the

results of the (adjusted) F-tests are consistent with the results

Table 4. Higher-terms-included adjusted sums of squares (sas type

III); sequential models that produce adjusted sums of squares for the

(a) interaction, (b) main effect of treatment and (c) main effect of

initial size are shown with (d) the composite anova table of these

adjusted sums of squares

Source d.f. SS MS F P

(a)

Treatment 1 35Æ3 35Æ3 0Æ33 0Æ58318
Size 1 4846Æ0 4846Æ0 45Æ37 0Æ00027
Interaction (=TS) 1 11Æ4 11Æ4 0Æ11 0Æ75338
Residual 7 747Æ8 106Æ8
Total 10 5640Æ5
(b)

TS 1 43Æ7 43Æ7 0Æ41 0Æ54284
Size 1 4251Æ9 4251Æ9 39Æ80 0Æ00040
Treatment 1 597Æ2 597Æ2 5Æ59 0Æ05001
Residual 7 747Æ8 106Æ8
Total 10 5640Æ5
(c)

TS 1 43Æ7 43Æ7 0Æ41 0Æ54284
Treatment 1 41Æ2 41Æ2 0Æ39 0Æ55438
Size 1 4807Æ9 4807Æ9 45Æ01 0Æ00028
Residual 7 747Æ8 106Æ8
Total 10 5640Æ5
(d)

Treatment 1 597Æ2 597Æ2 5Æ59 0Æ05001
Size 1 4807Æ9 4807Æ9 45Æ01 0Æ00027
Interaction 1 11Æ4 11Æ4 0Æ11 0Æ75338
Residual 7 747Æ8 94Æ9
Adjusted total 10 6164Æ3

TS is an indicator dummy variable used to fit the interaction term

before themain effects in order to produce higher-terms-included

adjusted sums of squares.
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of the t-tests of the estimates given in the table of coefficients

(because parameter estimates are always adjusted for all

other terms in the model too). Again, the question is whether

it makes sense to test main effects adjusted for interactions.

The case against higher-level terms included
adjusted sumsof squares

MISSING AND DOUBLE-COUNTED SUMS OF SQUARES

One of the main arguments against adjusted sums of squares

is that they result in missing or double-counted variation.

Recall (see above) that anova tables of adjusted sums of

squares do not sum to the total model sum of squares (as

sequential sums of squares do). Depending on the nature of

the correlations between explanatory variables, the sum of

the adjusted sums of squares can be less than the total model

sum of squares or more than it: the greater the imbalance the

greater the discrepancy. It is easiest to think about the case

where the total of the adjusted sums of squares is less than

the total sum of squares for the sequential model. Consider

the simplest example with two main effects, A and B, and no

interaction. If explanatory variables A and B are positively

correlated then they can be thought of as ‘sharing’ sums of

squares. In a Venn diagram (Fig. 1), the sums of squares for

A and B would be partially overlapping circles (for a similar

graphical approach, see Schmid et al. 2002). In this case,

adjusting both main effects (each for the other) results in the

shared or overlapping sums of squares not being counted. It

is these missing sums of squares that account for the differ-

ence between the sum of the adjusted sums of squares and the

total sum of squares for the whole model (e.g. the total of the

adjusted sums of squares in Tables 3 and 4 vs. the total of the

sequential squares in Table 2). The alternative situation is

where the correlation leads to ‘underlapping’ sums of

squares. These are much harder to illustrate graphically but

the situation is the reverse of what we have just described:

instead of the total of the adjusted sums of squares being less

than the total model sum of squares, it is greater because of

the ‘double-counted’ variation. Our example here omits the

interaction purely because it was beyond our abilities to

graphically illustrate it, but the basic principles concerning

overlapping and underlapping sums of squares extend to

examples involving interactions [as demonstrated in Appen-

dix S7 using an example fromAitkin (1977)].

MARGINAL ITY OF MAIN EFFECTS AND INTERACTIONS

One of the key criticisms of sums of squares that adjust for

higher terms is that they do not respect marginality (Nelder

1977; Nelder & Lane 1995). In the context of unbalanced ano-

va, marginality refers to the relationship between higher- and

lower-order (or level) terms. Respecting the marginality rela-

tions of variables in a model formula means taking account

of their position in the hierarchy of main effects and interac-

tions. The principle can be simply illustrated using the two-

way factorial analysis example. To respect marginality, mod-

els including the interaction term should also include both

main effects. More generally, when a higher-level interaction

is included in a model, all lower-level interactions and main

effects should be included too. For our example, this means a

model that includes the interaction should also include the

main effects of size and removal treatment. The main effects

are said to be marginal to the interaction. Furthermore, mar-

ginality implies that when interpreting an anova with interac-

tions, we should start at the bottom of the table, looking at

the highest-order terms first. If an interaction is significant,

then the null hypothesis of additive main effects can be

rejected, and we know that the effect of one variable depends

on the other. The significant interaction already tells us that

the main effects are also important, but that they do not have

simple independent effects that can be expressed by averaging

over the levels of the other factors. Therefore, it normally

makes little sense to interpret a main effect in the presence of

a significant interaction (Appendix S8). Venables (2000) and

Venables & Ripley (2002) make essentially the same argu-

ment against adjusting for higher-level terms, as do Aitkin

(1978, 1995) and colleagues (Aitkin et al. 2009) and Stewart-

Oaten (1995), who says in this context that higher-terms-

included adjusted sums of squares are, ‘best for a test of main

effects only when it makes little sense to test main effects at

all’.

THE NULL HYPOTHESIS OF NO MAIN EFFECT IN THE

PRESENCE OF AN INTERACTION

The null hypothesis tested for the main effects when using

higher-terms-included sums of squares is unlikely to be true

(although to be fair this is a criticism of null hypothesis test-

ing generally). McCullagh (2005) reviews the situation as

follows:

Nelder (1977) and Cox et al. (1984) argue that statistical

models having a zero average main effect in the presence

of interaction are seldom of scientific interest. McCullagh

(2000) reaches a similar conclusion …. By definition, non-

zero interaction implies a non-constant treatment effect,

so a zero treatment effect in the presence of non-zero

interaction is a logical contradiction.

For the null hypothesis of no main effect (for either factor)

to be true in the presence of a significant interaction, the

effect of one factor would have to differ depending on the

level of the other (the non-additivity that defines an interac-

tion) but in such a way that the differences cancel exactly

such that the effect of one factor averaged across the levels of

the other factor is zero. Many statisticians (above) see this as

extremely unlikely, although Stewart-Oaten (1995) considers

some hypothetical situations where this might occur and we

provide some further possibilities (Appendix S8).

MARGINALITY: SPECIAL CASES

Most statisticians seem to consider respecting marginality to

be the sensible thing to do in general, even those who support
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the use of higher-terms included sums of squares in some situ-

ations (Searle 1995; Fox 2002; Quinn &Keough 2002). What

are these special situations? An obvious one is when the

degree of imbalance is minor and sequential and higher-

terms-included adjusted sums of squares produce qualita-

tively similar answers and the adjusted sums of squares avoid

the complexity of presenting the alternative (but similar)

sequential analyses. Another situation may be in the case of

large complex data sets where there is a desire to test main

effects despite interactions. Searle (1995) gives an example of

a large and complex data set, ‘involving 9 factors having a

total of 56 levels, more than 5 million cells and 8577 data

points. Assessing interactions from thewhole data set was out

of the question’. As discussed below, other statisticians do not

agreewith this approach to complex unbalanceddata sets.

There are also some special cases where the usual margin-

ality relations do not apply. Nelder (1994) gives an example

of a special case of analysis of covariance (ancova) where it

might make sense to remove the intercept even in the pres-

ence of an interaction (differences in slopes) on theoretical

grounds (Appendix S9). Nelder’s (1977) criticisms of higher-

terms-included adjusted sums of squares also prompted other

suggestions where it might make sense to look at main effects

in the presence of an interaction, including one from Tukey

(1977) which is summarized in Appendix S10.

Summary of the sequential vs. adjusted sums of
squares debate

We can summarize the debate over unbalanced anova as fol-

lows, based on our reading of the literature and earlier

reviews (Herr 1986; Macnaughton 1998). The main motiva-

tion for higher-terms-included sums of squares appears to

have been the desire for a single outcome to unbalanced ano-

vawhere the values for the sums of squares are not dependent

on the order of the variables in the model formula and where

hypothesis tests are not affected by differences in sample sizes

for the treatment combinations. This desire seems to have led

many statistical software packages to use higher-terms-

included adjusted sums of squares as the default type.

On the other hand, many statisticians are critical of the use

of higher-terms-included adjusted sums of squares. The argu-

ments against these type III sums of squares centre on a

group of criticisms that relate to their disregard for marginal-

ity. Although there may be special cases where the usual mar-

ginality relations do not apply, most statisticians seem to

recommend respecting marginality as a good general princi-

ple. Statistical software packages remain divided in their

approaches, with some using higher-terms adjusted sums of

squares as the default type and others providing only sequen-

tial sums of squares. Some recent papers have recommended

that higher-terms-omitted (sas type II) sums of squares would

be a better choice for software that wants to use a type of

adjusted sums of squares as the default setting (Macnaugh-

ton 1998; Langsrud 2003) while others recommend compar-

ing a nested series of sequential (type I) models in an

approach similar to backwards-deletion multiple regression

(e.g. Nelder & Lane 1995; Venables & Ripley 2002; Aitkin

et al. 2009).

Recent developments

The last decade has seen a continued shift in emphasis away

from hypothesis tests and probability values in favour of

parameter estimation. In this context, it is worth pointing out

that tests performed on the parameter estimates from unbal-

anced anova (using t-tests or confidence intervals based on

the relevant standard errors) will not alwaysmatch the results

of the F-tests from the sequential anova. For single degree of

freedom, tests of variables in balanced data sets the results of

F and t tests do match: F = t2 (Venables & Ripley 2002).

However, for unbalanced data sets, there will be a mismatch

between some of the F and t tests. This is because, as

explained above, the sums of squares used to perform the F-

tests are calculated sequentially whereas the point estimates

and standard errors of each variable are assessed after con-

trolling for all others. This causes a problem in assessing vari-

ables in non-orthogonal analyses with positively correlated

explanatory variables that are significant when placed first in

the sequential model but non-significant when placed later.

The results of these analyses are ambiguous because, as we

have explained, the parameter estimates and intervals from

the different sequential models will be the same and will sup-

port the adjusted (non-significant) F-tests.

Another important development is the increase in the pop-

ularity of multi-model inference. Model selection approaches

like backward-deletion multiple regression using P-values

tend to result in the selection of a single model, despite rec-

ommendations to consider more than one model when

appropriate (McCullagh & Nelder 1989). Inferences based

on a set of models are now becoming more popular due to

the wider recognition of the problem of model selection

uncertainty and the increasing use of information criteria

(Anderson 2008).

The example data set revisited: objective-led
modelling

To illustrate the shift from searching for the ‘right’ anova

table towards presenting one or more models that best match

the objectives of the analysis, we revisit the two-way factorial

anova of the hypothetical data in Shaw & Mitchell-Olds

(1993) on the effects of neighbour-removal treatment (T), ini-

tial size (S) and the interaction (TÆS). They presented three

alternative analyses summarized in anova tables: the sequen-

tial (type I) model T + S + TÆS, the higher-terms-omitted

(sas type II) and the higher-terms-included (sas type III)

adjusted sums of squares. They recommend the sas type III

sum of squares analysis as it uses unweightedmarginal means

rather than taking into account the differing sample sizes per

treatment combinations. However, we argue that consider-

ation of the objectives of the analysis leads to a different

solution. If the goal of the anova is to test for significant dif-

ferences between treatments after accounting for differences
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in initial size, then we propose an ancova-type approach

where we want to control for differences in initial size before

assessing the effects of the neighbour-removal treatment (in a

typical ancova initial size would be a continuous covariate).

This consideration of the objectives suggests, a priori, a

sequential model with initial size fitted before neighbour-

removal treatment: S + T + TÆS. The null hypothesis tested
is of no effect of neighbour removal after controlling for dif-

ferences in initial target organism size. This model was dis-

cussed in the Shaw &Mitchell-Olds’ paper but not presented

in their Table 2. In this analysis, adjusting for initial size

causes treatment to become marginally significant. This is a

simple example, but it illustrates the shift away from the

search for the single ‘right’ anova table, to fitting the model

(or models) that best match the objectives of the analysis.

Conclusions

Our aim is not to assert that we have solved the debate over

the best approach to unbalanced anova. Far from it, there is

still much debate amongst statisticians and, as we have

shown above, authoritative backing can be marshalled for all

of the approaches reviewed here. This ongoing debate

amongst statisticians argues for open-mindedness. By this we

do not mean that anything goes! Rather we mean that we (as

teachers, analysts, reviewers, editors, etc.) ought to be open

to sensible arguments for a given approach.However, this still

calls for goodarguments in support of a chosenanalysis rather

than falling back on a ‘cook-book’ approach using whatever

recipe is known or close to hand. We finish by making some

recommendations that we hope will be of general use:

1. Consider whether the objectives and design imply one (or

a few) sequential models.

2. Perform tests where you can specify the corresponding

biological hypotheses.

3. Investigate imbalance: why has it occurred (was it acci-

dent or is it a property of the biology of the situation:

‘biological colinearity’?). What correlations and what

patterns in the sums of squares for the different sequen-

tial analyses has it caused (cf. Fig. 1)?

4. Test the interactions that are of interest first. If an inter-

action is significant (biologically and statistically) you

have your main answer and one which is independent of

the choice of sums of squares (sequential and adjusted

sums of squares give the same value for the highest-order

interaction). An interaction tells you that all factors

involved are important but that their effects depend on

each other. Appropriate graphs are a useful way of inves-

tigating the nature and strength of interactions.

5. When the imbalance is small, the difference between

sequential and adjusted sums of squares may be minor

with no difference in the qualitative outcome of the anal-

ysis (but remember the examples cited here that show

cases where the differences are larger and domatter).

6. Comparing the results of different sequential analyses

(including the adjusted sums of squares values contained

within them) often leads to a deeper understanding than

a single analysis. Focus on the model, or models, that

best match the objectives of the analysis rather than

searching for the single ‘right’ anova table.
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