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Abstract. Recent discussions of model selection and multimodel inference highlight a gen-
eral challenge for researchers: how to convey the explanatory content of a hypothesized model
or set of competing models clearly. The advice from statisticians for scientists employing multi-
model inference is to develop a well-thought-out set of candidate models for comparison,
though precise instructions for how to do that are typically not given. A coherent body of
knowledge, which falls under the general term causal analysis, now exists for examining the
explanatory scientific content of candidate models. Much of the literature on causal analysis
has been recently developed, and we suspect may not be familiar to many ecologists. This body
of knowledge comprises a set of graphical tools and axiomatic principles to support scientists
in their endeavors to create “well-formed hypotheses,” as statisticians are asking them to do.
Causal analysis is complementary to methods such as structural equation modeling, which
provides the means for evaluation of proposed hypotheses against data. In this paper, we sum-
marize and illustrate a set of principles that can guide scientists in their quest to develop
explanatory hypotheses for evaluation. The principles presented in this paper have the capacity
to close the communication gap between statisticians, who urge scientists to develop well-
thought-out coherent models, and scientists, who would like some practical advice for exactly
how to do that.

Key words: causal analysis; causal diagrams; explanatory models; multimodel averaging; multimodel
comparison; path analysis; regression; science methodology; structural equation modeling.

INTRODUCTION

Building regression models using a set of candidate
explanatory variables is a common practice in ecology.
In recent years, Burnham and Anderson (2002) have
championed an approach for choosing amongst alterna-
tive models using Akaike information (AIC) and multi-
model inference. As a result, the use of information
criteria and multimodel comparisons has become com-
mon practice in many disciplines, particularly in the
environmental sciences (Symonds and Moussalli 2011).
A careful reading of the literature on model comparison
and selection reveals persistent mention by statisticians
of fundamental difficulties with ascribing explanatory
interpretations to the coefficient estimates obtained

using regression models. Burnham and Anderson (2002)
highlighted this pervasive issue in their classic text on
multimodel inference (pp. 440–441), where they criticize
ecologists for not doing enough “critical thinking” when
crafting candidate models for evaluation. In the absence
of a carefully crafted set of competing models, model
selection cannot lead to scientifically interpretable find-
ings. The proposed remedy, given repeatedly in the Burn-
ham and Anderson writings, is simply for the scientist to
“think hard” about the candidate models. Scientists
might wonder, however, “How am I supposed to ‘think
hard’ about my candidate model set? Where is the chap-
ter in Burnham and Anderson or other statistics books
that present the fundamental rules for thinking hard
about candidate models in a set so that scientific inter-
pretability is supported?” The unambiguous message
being conveyed by statisticians is that it is the responsi-
bility of the scientist to bring to the analysis a set of can-
didate models with clearly distinguishable scientific
content. The reason for this is that the necessary expert
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knowledge to permit interpretation lies with the scien-
tist, not the statistician. This raises the question of where
scientists can find a set of general rules for developing
well-reasoned explanatory hypotheses.
We propose that the answer lies in the logical system

referred to as causal analysis (Pearl 2000, 2009, Hern�an
and Robins 2020). Recent advances in the field of causal
analysis provide the core principles for how to evaluate
the causal content of competing hypotheses. Some
aspects of modern causal analysis will be familiar to
ecologists through the related literature on structural
equation modeling (SEM; Shipley 2000a, 2016, Grace
2006), whereas other elements are relatively new and
ecological examples are scarce. In this paper, we first
illustrate the challenges that accompany attempts at
drawing scientific inferences from conventional regres-
sion models. We then describe and illustrate a set of
principles to guide scientists when developing explana-
tory hypotheses for evaluation.

THE PROBLEM WITH DRAWING SCIENTIFIC INTERPRETATIONS

FROM MULTIPLE REGRESSION MODELS

The challenge to drawing causal conclusions by
employing conventional regression methods is tied, in
part, to the limited capacity of such models to represent
complete hypotheses. This problem can be made more
tangible through graphical representation (Fig. 1). As
revealed in Fig. 1A, the predictors in a multiple regres-
sion model can be (and typically are) intercorrelated.
However, no causal explanations for the correlations
among predictors are specified as part of the regression
model. Why are X1 and X2 correlated? Is it because of

some unmeasured common cause? Perhaps X1 has a cau-
sal influence on X2? Perhaps the other way around? As
shown in Fig. 1B, there are many possible reasons for
three predictors to be correlated, each implying a differ-
ent scientific explanation for the nature of the relation-
ships between predictors and response. Because
scientific knowledge about possible explanations for the
intercorrelations cannot be encoded in the multiple
regression equation because of its simplicity, the hypoth-
esis represented by a multiple linear regression model
(Fig. 1A) is incomplete regarding potential mechanisms
underlying observed correlations, and thereby, interpre-
tationally ambiguous.
Compounding the problem of interpreting regression

coefficients is the fact that the correlations among pre-
dictors have profound effects on the estimated regression
coefficients. To show how this is manifested in regression
studies, let us turn to a specific example. In the fall of
2003, Keeley et al. (2005) established 1,000-m2 plots in
each of 90 sites to investigate the ecological effects of a
series of wildfires that burned through southern Califor-
nia. The investigators measured a set of variables that
might explain variations in postfire vegetation recovery
throughout the region. Measurements included: land-
scape position variables (distance from the coast and ele-
vation), prefire stand age (estimated from ring counts of
stems), fire severity (based on skeletal remains of
shrubs), and vegetation cover the spring following the
fires. The intercorrelations among variables in the wild-
fire study (Table 1) were only moderately strong; yet,
intercorrelation still presents a substantial problem for
interpreting the contributions of individual factors, as
we will show.

FIG. 1. (A) Graphical depiction of a regression model. Observed variables are in boxes and e represents errors of prediction.
Double-headed arrows represent intercorrelations and regression relationships by unidirectional arrows. (B) Six potential causal
hypotheses for the three correlated predictors (X1–X3). U variables represent unmeasured causes.
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Using conventional regression, all-subsets model com-
parison might be employed (Fisher et al. 2018). In the
case of four explanatory variables, there are 16 possible
regression models that could be specified (Table 2). Can-
didate models were estimated and ranked (Table 3;
Appendix S1, Data S1), and ultimately a single model
selected for scientific interpretation (model 12 in this
case). The reader can observe in Table 2 that the unstan-
dardized partial regression coefficients obtained from
different models exhibit substantial variations in magni-
tude depending on the other predictors included. In the
case of distance from the coast, for example, values actu-
ally shift from positive (0.875 in model 5) to negative
(�0.201 in model 16). The mathematical reasons for
these shifts are well understood (Cohen et al. 2003).
Each regression coefficient is adjusted (also known as
partialed) based on all of the other predictors in the
model. The fundamental mathematical rule is that the
bivariate associations between Xs and Y are taken to be
fixed values regardless of the other predictors in a
model. When predictors are strongly correlated, adding
or subtracting a predictor from a regression model can
lead to large changes in the regression coefficients for
the included predictors, including reversals of sign. In
regression models, such as Fig. 1A, understanding the
scientific implications of such shifts in coefficients is
extremely difficult and there is a long history of failed
efforts (reviewed by Elwert and Winship 2014, Pearl and
MacKenzie 2018). For the interested reader, we provide
an illustration of exactly why coefficients change when
variables are added to a model in Appendix S2, Data S2.
Although the problem with interpreting coefficients

from regression models has long been recognized, it was
recently brought to the fore by a series of papers dis-
cussing problems with the practice of model averaging
(Cade 2015, Fieberg and Johnson 2015, Banner and
Higgs 2017). Among those papers, Cade (2015) provided
the bluntest assessment when he said that averaging
coefficients over models with different sets of predictors
produces “muddled” inference because the scientific
meaning of coefficients shifts whenever a predictor is
added or removed. In this paper, we seek to clarify, from
the perspective of the scientist, why regression models
are difficult to use for explanatory modeling and what
can be done to remedy that situation. To accomplish
this, we provide investigators with a work flow for
explanatory modeling, a set of principles for developing
causal hypotheses, and references to statistical modeling

methods for evaluating those hypotheses against data.
Before diving into those key parts of our presentation,
we must first provide some essential background for
understanding causal effects.

OPERATIONAL DEFINITION OF A CAUSE–EFFECT RELATION-

SHIP—COUNTERFACTUALS AND POTENTIAL OUTCOMES

One approach to thinking about cause–effect rests on
the concept of counterfactuals. The counterfactual ques-
tion is, “What would have happened if. . .?” Behind this
question is an implied manipulation of the sort conceived
of in an idealized experiment, that is, “What would have
been the fate of an individual or sample if they had been
in the control group instead of the treatment group?” This
conceptualization of the problem allows causal effects to
be defined using either experimental or observational
data, which is a major part of its appeal.
Consider an ecological experiment investigating the

effects of pesticides on frogs. Our concept of a causal
effect assumes each individual frog has two potential out-
comes, the individual’s potential response after exposure
to pesticide and their potential response to nonexposure
(Neyman 1923, Rubin 1974). Only one of these will be
observed. Let us denote the treatment variable as Tmt
(e.g., exposure to pesticide or not). The question the
experiment is attempting to answer is “What would have
happened to individual i (or individual sample unit i),
which did not receive the treatment (i.e., was assigned to
the control group, Tmt = 0), if that individual had been
assigned to the pesticide exposure group (Tmt = 1).”
The causal effect of the treatment is estimated by the

TABLE 1. Bivariate correlations among variables used in the
wildfire example.

vegcover firesev age elev coastdist

vegcover 1
firesev �0.437 1
age �0.350 0.454 1
elev 0.218 �0.117 0.093 1
coastdist 0.243 �0.278 �0.278 0.606 1

TABLE 2. All-subsets regression models for vegetation recovery
following wildfire.

Model
no.

Explanatory variables included in the model

Fire
severity

Preburn age
of stand Elevation

Distance
from coast

1
2 �0.084
3 �0.088
4 0.027
5 0.875
6 �0.067 �0.048
7 �0.080 0.021
8 �0.077 0.475
9 �0.094 0.031
10 �0.077 0.568
11 0.014 0.634
12 �0.059 �0.058 0.025
13 �0.063 �0.043 0.373
14 �0.078 0.018 0.155
15 �0.097 0.033 �0.093
16 �0.060 �0.062 0.029 �0.201
Notes: Numbers in cells are raw coefficients relating predic-

tors to vegetation cover in the various models. Coefficients for a
predictor can vary among models, depending on the other vari-
ables included (e.g., distance from coast).
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difference between the two outcomes (treated or not
treated). In this two-treatment case, each individual sub-
ject has two potential outcomes:

• Yi1: potential outcome if individual i receives Treat-
ment = 1 (exposed to pesticide).

• Yi0: potential outcome if same individual receives
Treatment = 0 (not exposed).

In the case of explanatory models based on observa-
tional data, we can exploit Pearl’s (2000) introduction of
a new mathematical operator, the do-operator, to express
the idea of a hypothetical manipulation. With this oper-
ator, we can unambiguously represent the probability for
an individual’s hypothetical response when a treatment
variable Tmt is set to the specific value t (which is 0 or 1
in this case) as P[Y|do(Tmt = t)]. Notice the ability to
manipulate the variable Tmt physically is not required
(Bollen and Pearl 2013), though the ability to imagine
the value of Tmt being set to some value by humans or
nature is implied. Note that the common statistical nota-
tion “P(Y|X = x)” means the “probability of observing
Y, given that X is observed to equal x,” whereas Pearl’s
notation “P(Y|do(X = x))” means “the probability of
observing Y, given that X is forced to equal x.” In gen-
eral P(Y|X = x) is not equal to P(Y|do(X = x)). Pearl’s
do-calculus tells us when the two are equal and when
they are not equal (Pearl et al. 2016: Chapter 3).
This conceptualization of causal relations reveals a

problem, but also a possible solution to that problem.
The problem is that we can only observe one of the
potential outcomes for any given individual frog during
an experiment. Therefore, individual-level causal effects
are counterfactual and not directly observable, even in
randomized experiments. For this reason, the focus is
typically on the average causal effect, ACE, where

ACE ¼ E Y1½ � � E Y0½ � (1)

averaged across all i. When the consistency assump-
tion (Pearl 2009:99) holds,

E Y1½ � ¼ E Y jT ¼ 1½ � and E Y0½ � ¼ E½Y jT ¼ 0� (2)

In words, Eq. 2 says that the potential outcomes for
the total population, E[Y1] or E[Y0] are being inferred
from the subpopulations assigned to the treatments, E
[Y|T = 1] and E[Y|T = 0]. For observational studies, this
assumption permits causal effects to be estimated from
data as long as confounding effects are controlled for
(i.e., the treatment subpopulations are comparable). This
is a critical and also powerful assumption that determi-
nes our ability to infer causal information from observa-
tional (but also experimental) data. Note that this
conceptualization can be extended to the situa-
tion where X is continuous, in which case the causal
effect is captured in a parameter or set of parameters
(for complex functions).

EXPLANATORY MODELING IN ACTION

In this paper, we make a fundamental distinction
between the hypothesis and the inferential model. The
structure of the hypothesis and its logical requirements are
independent of any particular set of data. Inferential mod-
els, however, are inevitably dependent on the available data
and the statistical machinery used for estimation and eval-
uation. Based on this distinction, we place causal analysis,
a set of procedures for examining hypotheses independent
of data, into the broader context of explanatory modeling,
which encompasses all the information that influences the
interpretation of the results (Fig. 2). Causal analysis
describes the scientific assumptions upon which explana-
tory interpretations depend, whereas the latter must con-
sider the imperfections of the data, the limits of our
knowledge, and the need to accommodate computational
relationships in models. Because it depends so critically on
knowledge outside of an individual study, explanatory
modeling is best thought of as a process that builds confi-
dence in our understanding through a series of investiga-
tions. In this paper, our presentation focuses on causal
analysis to serve our objective of showing how to think
hard about the scientific content of candidate models.
More about the details associated with explanatory model-
ing, moving from theory to models to results to interpreta-
tions, is outlined in Grace et al. (2012) and Shipley (2016:
Chapter 8). Many of the general points we present are
widely applicable. However, the specific techniques herein
will most commonly be useful in observational studies
and field experiments with important covariate effects.
An overview of explanatory modeling is presented in

Fig. 2. The first step, assembling background information
about the system under study, is critical to success and
represents the mechanistic foundation required for scien-
tific interpretations. Step 2 is the process of causal analy-
sis, which describes the requirements for drawing
scientific (cause–effect) interpretations, our primary focus
in this paper. Step 3 refers to the subsequent step where
models are confronted with data and their testable impli-
cations are evaluated. This step is described by the litera-
ture on structural equation modeling (Appendix S3, Part
S1). Step 4 relates to drawing interpretations with proper
respect for assumptions. Finally, confident interpretations
ultimately depend on the consistency of findings and our
knowledge of mechanisms, which we refer to as sequential
learning (Step 5). Although this step is widely recognized
as important, it is often omitted from formal discussions
of the requirements for drawing causal inferences.

FOUR KEY PRINCIPLES OF CAUSAL ANALYSIS—THE PRAC-

TICE OF “THINKING HARD”

Principle 1: Causal networks provide a powerful and
convenient interpretive structure for causal analysis

The first of the four principles for causal analysis we
present in this paper (Table 4) deals with the merits of
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representing hypothesized relationships among a set of
variables using probabilistic causal networks. There are
two essential components of causal networks. One is the
causal diagram, which allows us to convey the logic of
our hypotheses, and the second is an appropriate equa-
tional framework for estimating network relationships.

Understanding the structure of causal diagrams.—A cau-
sal diagram is a pictorial graph of cause–effect relation-
ships that is used to represent scientists’ ideas about how
a system works (Robins 1986, Pearl and Verma 1991,
Greenland et al. 1999). The diagram is meant to repre-
sent a translation of the scientist’s ideas and hypotheses

TABLE 3. Ranking of candidate models based on AICc.

Model K AICc DAICc AICcWt Cum.Wt LL Predictors

m12 5 31.41 0.00 0.39 0.39 �10.35 F + A + E
m16 6 33.51 2.10 0.14 0.52 �10.25 F + A + E + C
m6 4 33.83 2.42 0.12 0.64 �12.68 F + A
m7 4 33.96 2.54 0.11 0.75 �12.74 F + E
m2 3 34.94 3.52 0.07 0.81 �14.33 F
m13 5 34.95 3.54 0.07 0.88 �12.12 F + A + C
m8 4 35.32 3.90 0.06 0.94 �13.42 F + C
m14 5 36.07 4.66 0.04 0.97 �12.68 F + E + C
m9 4 37.70 6.28 0.02 0.99 �14.61 A + E
m15 5 39.90 8.49 0.01 1.00 �14.59 A + E + C
m10 4 42.02 10.61 0.00 1.00 �16.78 A + C
m3 2 42.23 10.82 0.00 1.00 �17.98 A
m5 3 48.52 17.11 0.00 1.00 �21.12 C
m4 3 49.66 18.25 0.00 1.00 �21.69 E
m11 4 49.97 18.56 0.00 1.00 �20.75 E + C
m1 2 51.88 20.47 0.00 1.00 �23.87 Intercept only

Notes: Also presented are K = number of parameters in the model, including intercept and error variance (thus, K = number of
predictors + 2); AICc = sample-size adjusted Akaike information criterion; DAICc = numeric difference between the AICc for a
model and the minimum value for the model set; AICcWt = probability that an individual model is the best in the set of candidates;
Cum.Wt = cumulative value of AICcWt values; LL = log likelihood for a model. Predictor abbreviations: F, fire severity; A, age of
stand; E, elevation, C, distance from coast.

FIG. 2. Flow chart showing major steps in the process of explanatory modeling.
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about the data-generating mechanisms into a set of
observational expectations.
Consider a simple example involving four random

variables, X, Y, Z, and W (Fig. 3). Also shown in Fig. 3
are four unspecified causes of variation (U variables),
which create the random component of the variables.
Causal diagrams are based in a particular graph form,
referred to as a directed acyclic graph—directed because
all arrows are unidirectional, and acyclic because it con-
tains no causal loops. Variables directly connected by a
link are adjacent and those not directly connected are
nonadjacent. Pathways can be traced through a series of
links either following the flow of causation (directed
pathways) or ignoring directionality (undirected path-
ways). Directed pathways passing through two or more
links represent indirect effects in the model, whereas
those conveyed by a single link constitute direct effects
in the model. To say that W is a direct cause of Y in cau-
sal model M means “a change in W will induce a change
in Y even if we hold constant all other variables in M
except for W and Y.” To say that X is an indirect cause
of Y in causal model M through W means a change in X
will induce a change in Y if we hold constant all other

variables in M except for X and Y and those variables
along the directed path (causal chain) between X and Y
being discussed (W in this case). Importantly, variables
and links omitted from a causal diagram also represent
a set of explicit assumptions with empirical implications.
There are several definitional features of causal dia-

grams. First, directed arrows imply cause–effect relation-
ships. This means that if we physically change the values
of the variable at the base of an arrow (e.g., W in Fig. 3),
while holding constant all other predictors, it can alter
the values of the variable at the tip of the arrow (e.g., Y
in Fig. 3). There are two corollaries that go with this def-
inition of arrows. One is that there is understood to be a
finite passage of time between the cause and the
response. Thus, the arrows represent movement of infor-
mation from some time in the past to present. Another
corollary is that we can force changes to the quantity at
the tip of the arrow (e.g., Y) without influencing the
quantity at the base of the arrow (W) (also referred to as
the assumption of asymmetry). This means that chang-
ing present conditions should not change past condi-
tions. Thus, arrows represent implied experimental
manipulations and routinely we use thought experiments
to analyze the logical relations in causal diagrams. When
we can be more rigorous, we use physical experiments to
test our assumptions (Gough and Grace 1999). Note
that in regression models (Fig. 1A), the arrows simply
represent computations—if we see a particular value of
X1, we expect to see a particular value of Y. This concep-
tual distinction between the predictive interpretation of
regression and causal relationships is sometimes
described as the difference between “seeing” (an associa-
tion) and “doing” (hypothesizing responses to manipula-
tions); Lindley (2002).
A second attribute of directed relations in causal dia-

grams is that they are transitive, meaning that if X causes
W and W causes Y, then X is a cause of Y. There is suffi-
cient confusion about this point (particularly when peo-
ple start thinking in terms of “true” causes) that we offer
a memory aid for the transitive property, “relative to
some response, a cause of a cause is a cause.” This
phrase reminds us that distal causes are just as axiomatic
as proximal ones. This idea will help us clarify causal
logic when we return to the wildfire example later in the
paper.
A third attribute of causal diagrams is known as the

Markov condition (Hitchcock 2019). This means that we
only need to know proximate causes to compute the
expected values for a response variable. Relative to
Fig. 3, if the diagram is a true reflection of the data-gen-
erating mechanism, we can compute the expected values
for Y from the values of W and Z. Any influences from
X on Y can be seen to be conveyed through indirect
effects; therefore, we can say that X is conditionally
ignorable given W and Z.
Finally, causal diagrams are nonparametric in the

sense that no specific statistical assumptions about the
type of responses, linkage functions, or error

TABLE 4. Four key principles for causal analysis.

Principle Description

1 Causal networks provide a powerful and convenient
interpretive structure for causal analysis.

2 Many elements of network structure can be tested
with appropriate data, such as both omitted and
included links.

3 Confounding due to model misspecifications can
bias parameter estimates. Analysis of causal
diagrams can provide strategies for addressing this
issue.

4 The inclusion of mediators can encode testable
hypotheses about mechanisms and strengthen
inferences.

FIG. 3. Causal diagram consisting of four observable vari-
ables, X, Y, Z, and W connected by four directed arrows repre-
senting cause–effect relationships. U variables represent
unspecified, unobserved causes of variation. By convention,
models and causal diagrams are distinguishable by the fact that
in causal diagrams, variables are not outlined as they are in
models (Fig. 1).
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distributions are implied. As a result, the interpretation
of a causal diagram is independent of statistical details.

Understanding how associations among variables are gen-
erated.—To understand the logic of causal diagrams, we
need to understand the various ways that associations
between variables can be created. If the causal diagram
in Fig. 3 is true, a fundamental expectation is that all
adjacent variables will show conditional associations.
Considering the nonadjacent pairs of variables, there are
two primary ways associations can be created indirectly:
(1) through causal chains and (2) through common
causes. (There are actually other ways that associations
among variables can accidentally be created, which we
will describe later in the paper.) Causal chains (e.g., X ?
W ? Y) produce correlations between nonadjacent vari-
ables (X and Y in this case) through indirect, compound
pathways. The expected value for a bivariate association
between X and Y simply as a result of the three-variable
chain is the product of the strengths of effects along the
chain. For more complex relations, as in Fig. 3, where
there are two causal chains connecting X to Y in the dia-
gram (X?W? Yand X? Z? Y), we expect the total
bivariate association between X and Y to be the sum of
the indirect effects. Nonadjacent variables connected by
a common cause, for example, W X ? Z, will also be
expected to exhibit a bivariate association. Note that for
this type of pathway there is an implied historical effect
of X on W and Z. The expected value for the bivariate
association between W and Z is also the product of the
strengths of effects along the connecting pathway.
It is worth pointing out that there are special situa-

tions where variables are inherently nonindependent
quantities. For example, if W is the proportion of a plant
community biomass made up of legumes and Z is the
proportion made up of grasses, then both variables are
derived quantities with a common denominator, total
community biomass. The consequence is that W and Z
will be inherently nonindependent and be associated
even in a null model (where all links are nonsignificant).
This is a fundamental problem that can contribute com-
putational association to any pair of variables, including
adjacent ones. Adjustments for this fundamental issue in
data analysis are possible (Pawlowsky-Glahn and Buc-
cianti 2011), but beyond the scope of the present discus-
sion. For another example, it is possible for two sets of
variables to be correlated because they follow a common
developmental program. Again, this special case is
beyond the scope of our presentation.

Network equations: mathematical representation of causal
networks.—Generally, scientists represent information
about systems using networks (ecosystem models, food
webs, metabolic models) and those who apply science for
engineering and decision making rely on information
networks. Statistical models, in contrast, have tradition-
ally been reductionist, adopting the simplest representa-
tion possible in order to isolate a single effect of interest.

One might argue that the most notable separation
between statistical modeling and scientific modeling is
reflected in the difference between the equational form
for regression vs. causal networks.
This dichotomy can be traced back to competing

world views established by Ronald Fisher and Sewall
Wright in the 1920s. Fisher, whose dominant influence
over the development of statistics remains to this day,
was the father of the regression equation (Aldrich 2005).
There are many types of regression models, but they all
have the same general weaknesses with regard to
explanatory interpretation. Regression models are based
on the fundamental equational form

Y ¼ f Xð Þ (3)

where Y is a vector of response variables (or single
response variable), X is a vector of predictors, and f is
one of many functional forms, ranging from General
Linear Models to Generalized Linear Mixed Models.
The limiting features of this equation were discussed
above in relation to Figure 1.
Causal networks are based on a fundamental equa-

tional form developed by Wright (1921) that can be seen
as an extension of the regression equation

Y ¼ f X;Yð Þ: (4)

here, Y is a vector of the response variables embedded
within a network of relationships, X is a vector of exoge-
nous variables that define the boundaries for our model,
and f is a set of functional forms, again with no inherent
limit as to type. Importantly, it is the network of equa-
tions that permits and requires a priori scientific knowl-
edge.

Principle 2: Many elements of network structure can be
tested with appropriate data, including both omitted and

assumed links

Although adopting a network structure for our
hypotheses is an essential step, it is important to point
out that many aspects of hypothesized networks can be
tested, given appropriate data. This testing can lead to
the discovery of previously unsuspected mechanisms and
the specification of new models that require additional
testing and verification. Although we will illustrate this
process below, it is important to make the point that the
enterprise described in this paper is not part of so-called
assumption-based modeling. Many network-style mod-
els that ecologists might encounter are deductive expres-
sions of accumulated assumptions (see, for example, the
journal Ecological Modelling). The same description can
be applied to most theoretical models. Explanatory sta-
tistical models, however, provide methods for ruling out
a large number of possibilities using the principles
described next. Omitted links from hypothesized models
represent strong assumptions that create testable
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implications for data. Included links, which only claim
nonignorability, represent less strong, but nonetheless
testable, premises. The directionality of arrows (i.e., of
causal relationships), however, is one type of assumption
that requires theoretical justification and is not testable
from observational data alone (though can be tested
through manipulative experiments).

Principle 3: Confounding because of model
misspecifications can bias parameter estimates. Analysis
of causal diagrams can provide strategies for addressing

this issue

Much of the methodological work on causal inference
has dealt with ways of addressing potential impacts from
model misspecification (models that do not match the
true data-generating process). Until fairly recently, very
little work focused on a formal analysis of the problem.
Rules for recognizing potential sources of bias and devis-
ing remedies using causal diagrams now exist. These
rules have been summarized in axiomatic form using a
principle called d-separation (Pearl 1988).
The formal definition of d-separation gives the

requirements for two nonadjacent variables embedded in
a graph (e.g., W and Z in Fig. 3) to be conditionally
independent. Conditional independence is manifested
through the absence of residual association, which
means that if we were to include a directed link or error
correlation betweenW and Z, analyses with an appropri-
ate data set would find the link to be unsupported. To
break d-separation down, the first two (of the three)
rules of d-separation tell us what we need to do to iden-
tify (permit estimation of) causal effects properly. The
third d-separation rule relates to things to not do to
avoid inadvertently creating false signals.
The elements of the d-separation criterion include the

two diagram structures that generate associations
between nonadjacent variables mentioned earlier: (1)
causal chains and (2) common causes. It also addresses a
third diagram structure, referred to as collider relation-
ships. A collider variable is one receiving two or more
incoming arrows. In Fig. 3, W ? Y Z is our only col-
lider pathway, with Y being the collider variable. It is
characteristic that tracing pathways through colliders
involves a reversal in causal direction. The implications
of collider relationships can be understood by recogniz-
ing that the collider Y is a descendent of its parent vari-
ablesW and Z.
Conditioning is a key concept for understanding causal

analysis generally and d-separation specifically. This
word describes a number of statistical operations, so its
use can be a source of confusion. The variety of ways to
“condition on a variable” involve (1) including the vari-
able in a model, (2) preconditioning (residualize) the
variables of prime interest in order to remove the influ-
ences of variables that are to be omitted from the model,
(3) stratifying the data by levels of the variable, (4) sam-
pling from a population using the variable in the

sampling scheme, and (5) through various roles the vari-
able might play in censoring or truncating the data or
the sample. The rules that follow are meant to apply to
all these different situations.

d-separation rule 1.—Given a causal chain, X ? W ? Y,
complete or full mediation means once we regress Y on
W, X provides no capacity to explain additional varia-
tion in Y (i.e., the effect of X on Y is explained through
W). Therefore, Y is independent (⊥) of X, given that we
have conditioned YonW (|W).

Y?X jW (5)

In d-separation parlance, X and Yare said to be d-sep-
arated when Y is conditioned onW.

d-separation rule 2.—Given a common-cause pathway,
such as W X ? Z, conditioning W and Z, the descen-
dent variables, on the common cause variable X renders
W and Z d-separated (conditionally independent):

W?ZjX (6)

d-separation rule 3.—Considering an undirected path
including a collider, such as W ? Y  Z, conditioning
the ancestral variables (W and Z) on the collider (Y) can
create an association between otherwise independent
causes of the collider. Thus,

WZj X ;Yf g (7)

where the symbol ∦ means nonindependent. To make
this somewhat nonintuitive principle clear, a computa-
tional demonstration is given at the end of Appendix S4
for the interested reader.
Note that we would not normally condition on a col-

lider if we were using a causal diagram to build our model
because the direction of causality should be clear. How-
ever, there are multiple ways one might accidentally con-
dition antecedent variables based on a collider in other
contexts. One situation is in regression studies where ana-
lysts use preconditioning to remove confounding effects
from some relationship of interest (for example, a treat-
ment-response study where there is adjustment for
unequal treatment effectiveness). Another situation is
where data collection is restricted by an outcome, such as
looking for associations among causes of death using a
sample of dead animals (in this case, being dead, and
therefore part of the sample, is a descendent of the causes
of death). There are legions of examples where inadver-
tently conditioning on a collider has introduced bias into
analyses (Elwert and Winship 2014, Pearl and Mackenzie
2018). Awareness of this issue is one reason the use of
causal diagrams is spreading into fields that have histori-
cally relied on regression to address treatment-response
questions, such as epidemiology and econometrics.
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For more complicated diagrams than examined here,
the d-separation criterion goes a step further and
describes how to find the minimum sets of conditioning
variables to achieve d-separation. The implementation
of d-separation was first described in Shipley (2000b).
Several software packages are now available for working
through all the possibilities prior to fitting a model with
data (Textor et al. 2011, Marchetti et al. 2015). Routines
also exist in some SEM software (Lefcheck et al. 2018).
Both Shipley (2016) and Kline (2016) provide thorough
discussions of conditioning sets based on d-separation.

Principle 4: The inclusion of mediation relationships, in
the form of causal chains, encodes testable mechanistic

explanations

One of the most common scientific applications of a
network structure is to permit formal evaluation of
mediation hypotheses. By permitting the specification of
a mediation relationship in a causal chain, it is possible
to represent mechanistic explanations within models.
For example, the diagram in Fig. 3 encodes the hypothe-
sis that X affects Y through two mediators, W and Z. As
we shall see, once we transition to a fully specified statis-
tical model and data are used for estimation (Step 3 in
Fig. 2), tests of conditional independence allow us to
discover that the specified causal chain is either clearly
supported (all links are deemed biologically meaning-
ful), unsupported (no evidence for some links), or
incomplete (there is evidence that additional links are
needed). When unsupported, we may conclude that there
is no empirical evidence for the proposed mediation
mechanism. When incomplete, we conclude that there is
some additional mechanism whereby X influences Y that
is not through W or Z. This latter finding represents the
discovery of a new mechanism that was unsuspected and
only revealed via tests of mediation hypotheses. Many
other surprises can also be revealed through the use of
causal networks, a few of which we illustrate below in
the second example presented.

CONFRONTING HYPOTHESES WITH DATA—STRUCTURAL

EQUATION MODELING

Our primary objective in this paper is to show scien-
tists how to “think hard” about their hypotheses to pro-
mote explanatory analyses (Fig. 2, Steps 1 and 2). Our
four principles of causal analysis should assist in repre-
senting causal hypotheses and establishing their empiri-
cal claims. Now, we need to say something about
methods for confronting those hypotheses with data so
we can complete the illustration through the use of
examples (Fig. 2, Steps 3 and 4). No longer are we deal-
ing with diagrams, but instead, fully specified models.
We use the general term explanatory modeling in this
paper to describe the intention. For the context in which
we are working, the statistical methodology of structural
equation modeling (SEM) provides a well-established

framework for estimation, evaluation, and summarizing
findings.
There are many modern treatments of SEM (Kline

2016), some directed at natural scientists (Grace et al.
2015, Shipley 2016). It is beyond our purpose in this
paper to provide an in-depth introduction. Rather, we
offer a high-level view for scientists not already familiar
with the methodology, as well as executable code for the
examples in this paper in the Appendices. A survey of
what ecologists find helpful about SEM can be found in
Laughlin and Grace (2019).
Perhaps the most important point to make about

SEM is that it is a scientific framework for explanatory
modeling rather than a specific statistical technique.
There are no statistical assumptions that are inherent to
SEM; those depend on the implementations supported
by particular software programs. Thus, SEM is perfectly
compatible with the nonparametric description of
Pearl’s (2009) structural causal model, the primary
source for modern causal analysis. Related to that, the
methodology continuously evolves to incorporate proce-
dures supportive of explanatory modeling. This paper is
an illustration of that point through our demonstration
of how modern causal analysis integrates with SEM
(Fig. 2). Specialized regression procedures that are
sometimes presented as alternatives to SEM, such as
instrumental variables, simultaneous equations, two-
stage least squares, and hierarchical Bayesian models are
all implementable within the SEM framework. This
potential can be understood by reference back to the
form of the equations (Eq. 4), which allow the full suite
of regression-type statistical models as elements in an
SEM model. Another distinct attribute of SEM is that it
permits the evaluation of integrative system-level
hypotheses, as opposed to reductionist ones. It is cer-
tainly true that more complex models pose more risks
for violations of assumptions. Nonetheless, the evalua-
tion of causal-network-style hypotheses can yield more
scientific insights and more complete explanations when
applied successfully.

Example 1: A return to the wildfire recovery example

Our explanatory modeling work-flow process requires
explicit consideration of expert knowledge in order to
construct plausible hypotheses to convey in a causal dia-
gram. Following the data collection and initial examina-
tions of relationships conducted by Keeley et al. (2005),
Grace and Keeley (2006) compiled a carefully consid-
ered list of biological assumptions relevant to the mea-
sured variables (Table 5). This table is an example of
Step 1 in Fig. 2 and we feel a useful companion to the
causal diagram. In this demonstration, we first consid-
ered a na€ıve causal diagram (Fig. 4A) that considered all
possible links (denoted by the corresponding numbers in
Table 5). We used our na€ıve causal diagram (Fig. 4A)
and assembled expert knowledge (Table 5) to arrive at
an informed diagram (Fig. 4B). In this example, we start
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with a single hypothesis for consideration, which is
derived from our summary of expert knowledge. We do
this knowing that we will have the opportunity to com-
pare the support for this hypothesis against all the alter-
native hypotheses based on the same causal ordering of
predictors.
The backbone of the causal diagram is a directed

chain relating vegetation recovery (V) to fire severity (F)
to stand age (A) to elevation (E) to distance from the
coast (C). This sequence of variables represents an
ordering from proximal to distal potential drivers of veg-
etation response following fire. In an earlier review of
this paper, we were asked to explain how it can be
argued that the various predictors in this example actu-
ally constitute causes. The rule related to this point is
very basic and can be called the intervention-response
rule: if we can manipulate something and induce a
response in another system property, then the thing
manipulated qualifies as a cause of the thing that
responds. Confusion comes about when someone starts
wanting to distinguish what they think of as “true”
causes. Let us consider the most distal cause in the
chain, distance from the coast. Intuitively, it might seem
that this is a placeholder for some “actual” cause. A sim-
ple statement shows that location qualifies as a causal
variable. That statement is, “If you think location in
space is not an actual cause, then stand closer to the fire
and see if your opinion changes.” In reality, there are
many potential mediators that make up a causal chain.
We usually work with mediators that are meaningful for

our explanations and thereby avoid the problem of infi-
nite regress in explanation.
The causal diagram in Fig. 4B was translated into a

structural equation model using the software package
piecewiseSEM (Lefcheck et al. 2018). As shown in
Appendix S3, Data S3, estimation produces a set of d-
separation tests, one for each omitted link in the model.
These tests evaluate whether there is evidence to include
a missing link, and thus, whether it should be added to
the model. Global fit of the initial model suggested it
was a plausible explanation for the data. Further, tests
suggested equivocal support for some of the links, how-
ever, so simpler models were also considered. During
the evaluation process, individual d-separation tests
suggested the possibility of local violations of condi-
tional independence. We ultimately considered four
alternative models, omitting and adding various links.
The model selected from that process is shown in
Fig. 4C. The scientific conclusion we draw from the
results is that vegetation recovery varies widely in the
landscape, primarily as a function of fire severity, which
in turn is influenced by greater fuel accumulation in
older stands of woody plants. Distance from the coast
(dismissed as important by all-subsets regression) is
shown to influence recovery, but only indirectly through
effects on both stand age and fire severity, ultimately
being quite important in the system. The explanation
achieved is based on careful and explicit considerations,
something we could not easily achieve using an all-sub-
sets regression approach.

TABLE 5. Expert opinion relevant to an initial hypothesis of how vegetation cover following wildfire could be explained by the
measured predictors.

Number Interpretation

1 In southern California, where the wildfires took place, elevation generally increases as one moves eastward from the
coastal lowlands to the interior highlands (see Keeley et al. 2005, Fig. 1). Thus, increasing the distance from the coast
tends to cause an increase in elevation (expected effect: positive).

2 Increasing elevation should produce more mesic conditions, which in turn, would reduce the frequency of wildfires and
thereby increase the average ages of forest stands (because age is determined by time since last stand-replacing fire).
The net relationship expected is thus increased age with increasing elevation (expected effect: positive).

3 As stands age, they accumulate more biomass (alive and dead) that can serve as fuel during a wildfire. Therefore,
increasing stand age should lead to more severe fires when burning finally takes place (expected effect: positive).

4 Independent from other effects, moving away from the coast should result in less wildfire suppression and larger fires
because of reduced urbanization and population densities (expected effect: negative).

5 Fire severity depends not only on fuel, but also humidity. Thus, increasing elevation should contribute to less severe fires,
all other things equal (expected effect: negative).

6 Once the effects of stand age and elevation are taken into account, it is not obvious, based on a priori information, that
additional processes related to distance from the coast should have a major influence on wildfire severity (expected
effect: undetectable).

7 Once effects of elevation, stand age, and fire severity are controlled, it is not obvious, based on a priori information, that
vegetation recovery will be influenced by distance from the coast (expected effect: undetectable)

8 In the study region, a marked, orographic gradient leads to a strong positive effect of elevation on precipitation, which
would lead to faster plant regrowth and a more rapid recovery of the vegetation (expected effect: positive).

9 A negative effect of stand age on vegetation recovery might be observed because of the fact that increasing overstory
dominance in older stands will lead to a reduced understory. If the understory (including the seed bank) is a strong
contributor to vegetation recovery, an independent effect of stand age on vegetation recovery might be expected
(expected effect: negative).

10 There is a very strong a priori expectation that increased fire severity will result in reduced vegetation because of the
damage to the regenerating tissues of plants and possibly effects on soil that reduce water penetration (expected effect:
negative).
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Example 2: In situ experimental study of a marine food
web

Models developed using experimental data are also
often evaluated using model comparisons, and such data
allow us to illustrate the utility of the principles in this
paper further. For this example, we draw upon a study of
food webs in marine seagrass beds (Whalen et al. 2013).
In this system, the dominant herbivores are small inverte-
brates (specifically, microcrustaceans), which graze on the
epiphytic algae that grow on seagrasses while also being
important prey for fish. A global decline in seagrass beds
has raised concern that reduced populations of larger fish
(due to commercial harvest) is resulting in an increase in
small fish and subsequent reduction in microcrustaceans
(a trophic cascade). The microcrustaceans have been
hypothesized to serve in a protective role for seagrasses by
grazing on the epiphytic algae that grow on seagrass
leaves and that impair plant photosynthesis and survival.
Convincing field experimental demonstration of this top-
down process has been lacking. In this study, the authors
examined the responses of microcrustaceans and their
predominant food supply, epiphytic algae, to treatment
with slow-release insecticide in seagrass beds. Experimen-
tal plots were established by sinking plastic poles into the
sediment and suspending insecticide-impregnated blocks,
or insecticide-free blocks, within the seagrass canopy
20 cm above the sediment surface. Forty experimental
plots were located randomly within the study area and
were randomly assigned to receive insecticide or not.
Sampling of microcrustaceans and epiphytes were con-
ducted at the end of the experiment. Microcrustaceans
were divided by taxa and abundance was estimated. Epi-
phyte abundance was also measured.
Given the three response variables (epiphyte biomass,

Gammarid crustaceans, and Caprellid crustaceans) and
two covariates (macroalgae and seagrass density) mea-
sured, there are a variety of different analyses that an
investigator might perform. First to come to mind is the
suite of options that include ANOVA, MANOVA,
ANCOVA, and MANCOVA. We present causal diagrams
for these classic models in Fig. 5. The primary differences
from our earlier example to keep in mind are (1) treat-
ment was randomly assigned and (2) the treatment “Trt”

is a binary (0/1) variable. As with regression, we are gener-
ally limited in ANOVA, ANCOVA, and MANOVA by
the equational form of the model, Y = f(X), where the X
vector includes the treatment variable and any variables
included as covariates. In this case, Y can be a single
response variable or any subset of the three responses.
Let us consider some possible rationale for the options

shown in Fig. 5. Diagram A is the classic ANOVA.
Because of randomization, we might reason that covari-
ates like macroalgae (Mac) and seagrass density (Gra),
should be independent from the treatment assignment;
thus there is no reason one must include the covariates
in the diagram, as the effect of treatment should be the
same regardless. Comparison to results from the
ANCOVA (Diagram E) is expected to confirm this
assumption, though one should always check, as ran-
dom assignment does not guarantee comparable control
and test groups. Diagram B could be justified because
microcrustaceans (Gammarids and Caprellids) are a dis-
tinctly different type of response from epiphytes. We
might, for example, see one or both microcrustacean
groups respond, but no response from epiphytes. For
this reason, we might want to perform separate analyses.
Diagram C represents a classic MANOVA with all three
responses treated as a single response. For this particular
study, it might seem more logical to interpret results
from Diagrams A and B instead of C because the
response types are clearly different.
Diagram D represents an interesting possibility.

Because epiphytes constitute the food supply for micro-
crustaceans, then an investigator might use epiphytes as
a covariate to adjust for differential food supplies among
plots. They could either perform an ANCOVA individu-
ally for the Gammarids and Caprellids, or look at their
joint response as depicted in Diagram D. There are mer-
its and demerits to either approach. Diagrams E, F, and
G represent different versions of ANCOVA with epi-
phytes as the focal response. Diagram E is a standard
ANCOVA, including the two covariates abundance of
macroalgae (Mac) and density of the seagrass in a plot
(Gra). In Diagram F, the logic shifts from that used in
Diagram E. Because the treatment method (slow-release
insecticide) cannot kill 100% of the microcrustaceans in
the open plots, experimental control is incomplete in this

FIG. 4. (A) Naive causal diagram with all possible links. (B) Hypothesis based on available expert opinion (Table 5). (C) Model
informed by data and d-separation tests (Appendix S3). Dashed lines represent negative effects, solid lines positive effects.
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study. Controlling the variable responses of microcrus-
tacean by including these variables as covariates might
seem to be a useful way to remove their variations from
the assessment of treatment effects on epiphytes. Dia-
gram G represents a commonly employed approach,
which is to control for as many possible influences as
possible. This cursory discussion of possibilities is meant
to point out that causal hypotheses will have to be
brought to bear in order to decide which of these models
will produce defensible results.
It is instructive to compare the hypotheses that can be

examined using classical statistical models (Fig. 5) to the
possibilities that emerge from adopting a causal network
perspective. For this comparison, we refer the reader to
a causal diagram representing a dual mediation hypothe-
sis in Fig. 6A. Here, impacts of treatment on Gam-
marids and Caprellids, the two dominant groups of
microcrustaceans, are hypothesized to explain the effect
of treatment on epiphytes. This model also includes
macroalgae and seagrass density as covariates poten-
tially influencing epiphytes. This diagram was treated as
the initial hypothesis, which was subsequently evaluated
using the available data. The structural equation model
presented in Fig. 6B summarizes results for the final
model once d-separation tests were performed and links
were added to resolve d-separation violations
(Appendix S4, Data S4).
There are numerous, interesting scientific findings

revealed by the SEM (Fig. 6B; see also Whalen et al.
2013). First, we are able to evaluate the full-mediation
hypothesis formally. The two mediation pathways
(those combining links 1 ? 3 and 2 ? 4) were found

to explain the response of epiphytes to treatment com-
pletely. As a result, there is no link directly from treat-
ment to epiphytes in the final model. Finding support
for full mediation is a highly desirable outcome in an
experiment, because we are not scientifically interested
in the effects of insecticide and prefer a model where
artificial treatments are conditionally ignorable. Sec-
ond, empirical evaluation of the implied conditional
independences from the initial hypothesis (Fig. 6A)
revealed three nonindependences that could be
resolved by adding links (Fig. 6B, added links shown
with asterisks). This produced evidence to suggest pre-
viously unanticipated biological discoveries related to
the system under study.
The positive effects discovered by the analysis (links 7,

8, and 9) can be interpreted as indications that macroal-
gae (to a large degree) and eelgrass density (to a lesser
degree) provide protective refuges for microcrustaceans.
By promoting microcrustaceans, macroalgae have indi-
rect negative effects on epiphytes (through the pathways
7 ? 3 and 8 ? 4). Within the total food web, this could
translate into macroalgae facilitating seagrasses by har-
boring microcrustaceans, the grazers of epiphytes (which
are the enemies of seagrasses). We believe scientists will
find this system-level set of results substantially more
informative than results from traditional ANCOVA.

INTERPRETATIONS AND CONSIDERATIONS

Explanatory modeling requires adequate expert
knowledge to defend scientific interpretations. Appropri-
ate data are also required and frequently limit the

FIG. 5. Causal diagrams representing (A) ANOVA 1, (B) ANOVA 2, (C) MANOVA 1, (D) MANCOVA 1, (E) ANCOVA 1, (F)
ANCOVA 2, (G) ANCOVA 3. Trt = treatment, Epi = epiphyte abundance, Gam = Gammarid abundance, Cap = Caprellid abun-
dance,Mac = macroalgae abundance, and Gra = seagrass density. Results for these models can be found in Appendix S4.
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conclusions that can be drawn. There are many ways our
models and interpretations can deviate from the truth,
to either major or minor degrees. Here we list three
increasingly challenging types of assumptions upon
which interpretations depend. (1) Foundational assump-
tions—arrows in models indeed represent directional
cause–effect relationships. Generally, this must be sup-
ported by a priori expert knowledge of mechanisms. (2)
Parameter estimates approximate true values to the
degree that overall conclusions are not confounded.
Again, expert knowledge of the system under investiga-
tion needs to be sufficient to defend general conclusions.
Further, it is important that investigators be aware of
the ways that confounding can occur and the need to
guard against the omission of critically important com-
mon causes. (3) Inferring that one or more parameter
estimates are unbiased (true) estimates of causal effects
constitutes a stricter assumption. Both omitted con-
founders and measurement error, along with a host of
more technical issues, can bias estimates to various
degrees (though remedies to even these challenges exist;
Bollen 2019). For these reasons, appropriate caution is
required when drawing conclusions.
Suitably cautious language for expressing findings will

vary depending on the above-mentioned factors. As one
illustration, we present the language Grace and Keeley
(2006) used when reporting their findings from the wild-
fire recovery study.

We infer from the SEM results that postfire rich-
ness in this system is strongly influenced by local
conditions and that these conditions are, in turn,
predictably related to landscape-level conditions.
For example, we observed that older stands of
shrubs were characterized by more severe fires,
which were associated with a low recovery of plant
cover and low richness. These results may have
implications for the use of prescribed fire in this
system if these findings extrapolate to prescribed
burns as we would expect.

Subsequent SEM studies (Keeley et al. 2008) have
enhanced our confidence in the general inferences drawn
from the original study. That said, we would not claim
that all our parameter values are unbiased causal esti-
mates without further evidence to support such inferences.

CONCLUSIONS AND FUTURE DIRECTIONS

Causal understanding is ultimately about understand-
ing mechanisms. The majority of studies that scientists
conduct are directed to that end. Classical statistical
models do not easily accommodate the explicit incorpo-
ration of mechanisms into hypotheses, limiting their
capacity for explanatory application. Adopting a causal
network framework and the principles of causal analysis
for hypothesis development and evaluation greatly
increases possibilities for the development of explana-
tory models and clear expression of their logic. We hope
this presentation provides a guide toward that future by
helping scientists see their own responsibilities and
opportunities in quantitative analysis.
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