We have explained nothing!
We have perfectly explained this sample
Prediction: 806.8141456, Observe: 515
Deviance: 8.526583810^{4}
Slope of 1.87 (~2)
\[AIC = Deviance + 2K\]
Information Loss(truth,modeli) = \(\mathscr{L}_{truth}log\frac{\mathscr{L}_{truth}}{\mathscr{L}_{model \thinspace i}}\)
Two neat properties:
Comparing Information Loss between model1 and model2, truth drops out as a constant!
We can therefore define a metric to compare Relative Information Loss
Akaike’s Information Criterion - lower AIC means less information is lost by a model
\[AIC = -2log(L(\theta | x)) + 2K\]
Which model better describes a general principle of how the world works?
\[AIC = -2log(L(\theta | x)) + 2K\]
\[AICc = AIC + \frac{2K(K+1)}{n-K-1}K\]
Many other IC metrics for particular cases that deal with model complexity in different ways. For example \[AIC = -2log(L(\theta | x)) + 2K\]
Lowest AIC = Best Model for Predicting New Data
Tends to select models with many parameters
\[BIC = -2log(L(\theta | x)) + K ln(n)\]
Lowest BIC = Closest to “Truth”"
Rules of Thumb from Burnham and Anderson(2002):
- \(\Delta\) AIC \(<\) 2 implies that two models are similar in their fit to the data
- \(\Delta\) AIC between 3 and 7 indicate moderate, but less, support for retaining a model
- \(\Delta\) AIC \(>\) 10 indicates that the model is very unlikely
[1] 722.2085
[1] 736.0338
[1] 738.796
7 models alone with 1 term each
127 possible without interactions.
\[w_{i} = \frac{e^{-\Delta_{i}/2 }}{\displaystyle \sum^R_{r=1} e^{-\Delta_{i}/2 }}\]
Where \(w_{i}\) is the relative support for model i compared to other models in the set being considered.
Model weights summed together = 1
We use this model as a jumping off point, and construct a series of nested models with subsets of the variables.
Evaluate using AICc Weights!
Modnames | K | AICc | Delta_AICc | ModelLik | AICcWt | LL | |
---|---|---|---|---|---|---|---|
1 | full | 9 | 688.162 | 0.000 | 1.000 | 0.888 | -333.956 |
3 | soil_fire | 7 | 692.554 | 4.392 | 0.111 | 0.099 | -338.594 |
4 | soil_plant | 7 | 696.569 | 8.406 | 0.015 | 0.013 | -340.601 |
7 | fire | 4 | 707.493 | 19.331 | 0.000 | 0.000 | -349.511 |
2 | plant_fire | 6 | 709.688 | 21.526 | 0.000 | 0.000 | -348.338 |
5 | soil | 5 | 711.726 | 23.564 | 0.000 | 0.000 | -350.506 |
6 | plant | 4 | 737.163 | 49.001 | 0.000 | 0.000 | -364.346 |
8 | null | 2 | 747.254 | 59.092 | 0.000 | 0.000 | -371.558 |
How to I evaluate the importance of a variable?
Variable Weight = sum of all weights of all models including a variable. Relative support for inclusion of parameter in models.
Importance values of 'firesev':
w+ (models including parameter): 0.99
w- (models excluding parameter): 0.01
\[\hat{\bar{\beta}} = \frac{\sum w_{i}\hat\beta_{i}}{\sum{w_i}}\]
\[var(\hat{\bar{\beta}}) = \left [ w_{i} \sqrt{var(\hat\beta_{i}) + (\hat\beta_{i}-\hat{\bar{\beta_{i}}})^2} \right ]^2\]
Buckland et al. 1997
Multimodel inference on "firesev" based on AICc
AICc table used to obtain model-averaged estimate with shrinkage:
K AICc Delta_AICc AICcWt Estimate SE
full 9 688.16 0.00 0.89 -1.02 0.80
plant_fire 6 709.69 21.53 0.00 -1.39 0.92
soil_fire 7 692.55 4.39 0.10 -1.89 0.73
soil_plant 7 696.57 8.41 0.01 0.00 0.00
soil 5 711.73 23.56 0.00 0.00 0.00
plant 4 737.16 49.00 0.00 0.00 0.00
fire 4 707.49 19.33 0.00 -2.03 0.80
null 2 747.25 59.09 0.00 0.00 0.00
Model-averaged estimate with shrinkage: -1.09
Unconditional SE: 0.84
95% Unconditional confidence interval: -2.74, 0.56
newData <- data.frame(distance = 50,
elev = 400,
abiotic = 48,
age = 2,
hetero = 0.5,
firesev = 10,
cover=0.4)
Model-averaged predictions on the response scale
based on entire model set and 95% confidence interval:
mod.avg.pred uncond.se lower.CL upper.CL
1 31.666 6.136 19.64 43.692
Computed from 4000 by 90 log-likelihood matrix
Estimate SE
elpd_waic -369.2 5.1
p_waic 2.5 0.4
waic 738.4 10.1
Model | WAIC | SE |
---|---|---|
keeley_full_brm | 686.48 | 12.72 |
keeley_soil_fire_brm | 691.37 | 14.51 |
keeley_soil_plant_brm | 695.52 | 11.96 |
keeley_fire_brm | 707.00 | 13.18 |
keeley_plant_fire_brm | 708.61 | 12.88 |
keeley_soil_brm | 711.24 | 13.65 |
k_abiotic_brm | 722.22 | 14.52 |
k_firesev_brm | 735.78 | 9.87 |
keeley_plant_brm | 735.94 | 9.37 |
k_cover_brm | 738.43 | 10.11 |
keeley_null_brm | 746.91 | 10.66 |
Model | WAIC | SE | delta_waic | weight |
---|---|---|---|---|
keeley_full_brm | 686.48 | 12.72 | 0.00 | 0.91 |
keeley_soil_fire_brm | 691.37 | 14.51 | 4.89 | 0.08 |
keeley_soil_plant_brm | 695.52 | 11.96 | 9.04 | 0.01 |
keeley_fire_brm | 707.00 | 13.18 | 20.52 | 0.00 |
keeley_plant_fire_brm | 708.61 | 12.88 | 22.13 | 0.00 |
keeley_soil_brm | 711.24 | 13.65 | 24.76 | 0.00 |
k_abiotic_brm | 722.22 | 14.52 | 35.74 | 0.00 |
k_firesev_brm | 735.78 | 9.87 | 49.30 | 0.00 |
keeley_plant_brm | 735.94 | 9.37 | 49.46 | 0.00 |
k_cover_brm | 738.43 | 10.11 | 51.95 | 0.00 |
keeley_null_brm | 746.91 | 10.66 | 60.43 | 0.00 |
Model | WAIC | SE |
---|---|---|
keeley_full_brm - keeley_soil_fire_brm | -4.89 | 5.71 |
keeley_full_brm - keeley_soil_plant_brm | -9.04 | 7.15 |
keeley_full_brm - keeley_fire_brm | -20.52 | 8.98 |
keeley_full_brm - keeley_plant_fire_brm | -22.13 | 8.83 |
keeley_full_brm - keeley_soil_brm | -24.76 | 9.61 |
k_abiotic_brm - keeley_full_brm | 35.74 | 11.31 |
k_firesev_brm - keeley_full_brm | 49.30 | 12.34 |
keeley_full_brm - keeley_plant_brm | -49.46 | 12.21 |
k_cover_brm - keeley_full_brm | 51.95 | 13.08 |
keeley_full_brm - keeley_null_brm | -60.43 | 13.60 |
Are these really different?
# A tibble: 55 x 3
Model WAIC SE
<chr> <dbl> <dbl>
1 k_abiotic_brm - k_cover_brm -16.2 12.2
2 k_abiotic_brm - k_firesev_brm -13.6 11.6
3 k_abiotic_brm - keeley_full_brm 35.7 11.3
4 k_abiotic_brm - keeley_soil_fire_brm 30.8 10.5
5 k_abiotic_brm - keeley_plant_fire_brm 13.6 12.4
6 k_abiotic_brm - keeley_soil_plant_brm 26.7 9.70
7 k_abiotic_brm - keeley_soil_brm 11.0 6.28
8 k_abiotic_brm - keeley_fire_brm 15.2 11.7
9 k_abiotic_brm - keeley_plant_brm -13.7 11.9
10 k_abiotic_brm - keeley_null_brm -24.7 10.2
# ... with 45 more rows
Maybe average coefficients?
term | estimate | std.error | conf.low | conf.high |
---|---|---|---|---|
Averaged_Hetero | 44.02312 | 11.45751 | 22.84430 | 67.73754 |
Full_Model_Hetero | 44.60816 | 11.11284 | 24.09043 | 67.73754 |