
Probability!
Probability - The fraction of
observations of an event given
multiple repeated independent
observations.

A Feeding Trial Example

Let’s say you’ve offered
50 budworms a leaf to eat.
45 eat. P(eats) = 45

50 = 0.9

Now you offer
50 others a treated leaf.
10 eat. P(eats) = 10

50 = 0.2

Probability of NOT doing something

What is the
probability of not eating if
you are fed a treated leaf?

P(! eats) = 1− 10
50 = 0.8

P(!A) = 1-P(A)



Probability of Exclusive Events

What if we offered
our budworms both a
treated and untreated leaf?
20 eat the control,
5 eat the treated leaf.

P(eats) = 20
50 + 5

50 = 0.5

P(A or B) = P(A) + P(B)

Two Events

We offer our budworms a leaf.
45 eat it. Then we offern them
seconds. 20 of the original
45 each the second leaf.

P(eats twice) = 20
50 = 0.4

= 45
50 ∗

20
45

P(A and B) = P(A)P(B)

Two Conditional Events

If we are interested in
the probability of eating twice
- i.e. the probability of eating
a second time given that a
budworm ate once, we phrase
that somewhat differently.

P (eats2|eats1)

So, P(A and B) = P(A)P(B‖A)

Probability Tree
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Bayes Theorem

P (A|B)P (B) = P (B|A)P (A)

So...
P (A|B) = P (B|A)P (A)

P (B)

GMO Collateral Damage

Let’s say you you had a rare but extremely harmful budworm
munching ravenously through your fields. You’ve developed a really
effective GMO tobacco leaf to help stop it. It has a 75% kill rate.
And, miraculously, it only has a 15% kill rate of non-budworms.
Given that the budworms make up about 10% of the insects in a
field, what’s porportion of dead insects WON’T be budworms?

P (!W |D) = 1− P (W |D)

P (W |D) = P (D|W )P (W )
P (D)

= P (D|W )P (W )
P (D|W )P (W )+P (D|!W )P (!T ) = 0.75∗0.1

0.75∗0.1+0.15∗0.9 = 0.357

1− 0.357 = 0.643 - the majority of the dead!

Why are we talking about this??

As we test hypotheses in a frequentist framework, we’ll be asking
about the probability of observing data given that a hypothesis is
true - P(Data ‖Hypothesis).

Distributions!
(when a point probabilty just ain’t enough)



Frequency Distributions Make Intuitive Sense
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Frequencies Can be Turned Into Probabilities
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Just divide by total # of observations
But - we have binned observations...

Frequencies of Individual Observations
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Can we turn these into probabilities?

Probabilities of Individual Measurements
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Many probabilities small, and what about the gaps?



Continuous Probability Distributions
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Any individual observation has a probability density.

Probability as Integral Under the Curve
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We obtain probabilities of observations between a range of values
by integrating the distribution over selected values.

The Normal Distribution

mean=0, sd=1
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I Defined by it’s mean
and standard
deviation.

I Y ~N(µ, σ)
I Single mode
I Symmetric

67% of Values within 1 SD

mean=0, sd=1
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95% of Values within 2 (1.96) SD

mean=0, sd=1
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How to Get A Probability Density in R

mean=0, sd=1
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dnorm(Y, mean = 0, sd = 1)

The Probability of a Value or More Extreme Value

mean=0, sd=1
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pnorm(Y, mean = 0, sd = 1)

The Cummulative Distribution/Quantile Function
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The Cummulative Distribution/Quantile Function

pnrm an dqnorm are the inverse of one another

pnorm(-1)

## [1] 0.1587

qnorm(pnorm(-1))

## [1] -1

qnorm(0.025)

## [1] -1.96

The Lognormal Distribution
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I An exponentiated normal
I Defined by the mean and

standard deviation of its log.
I Y ˜LN(µlog, σlog)
I Generated by multiplicative

processes

dlnorm(Y, meanlog = 0, sdlog = 1)

The Gamma Distribution
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I Defined by number of
events(shape) average time
to an event (scale)

I Can also use rate (1/scale)
I Y ˜G(shape, scale)
I Think of time spent waiting

for a bus to arrive

dgamma(Y, shape = 2, scale = 2)

Waiting for more events

Shape = 2, scale = 2

Shape = 5, scale = 2
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Longer average time per event

Shape = 2, scale = 2

Shape = 2, scale = 3
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The Poisson Distribution
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I Y ˜ P(lambda)

dpois(Y, lambda = 5)

When Lambda is Large, Approximately Normal
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The Binomial Distribution

0.00

0.05

0.10

0.15

0.20

0 2 4 6 8 10 12 14 16 18 20
Y

P
ro

ab
ili

ty
 D

en
si

ty

I Results from multiple
coin flips

I Defined by size (# of
flips) and prob
(probability of heads)

I Y ˜ B(size, prob)
I bounded by 0 and size

dpois(Y, size, prob)



Increasing Probability Shifts Distribution
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The Negative Binomial Distribution
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I Distribution of
number of failures
before n number of
successes in k trials

I Or mean # of counts,
µ, with an
overdispersion
parameter, size

I Y ˜ NB(µ, size)

dnbin(Y, mu, size)

Exercise

I Explore the distributions we have discussed
I Examine how changing parameters shifts the output of

probability function
I Compare curves generated using density functions (e.g.,

dnorm) and large number of random draws (e.g. from rnorm)
I Overlay these in plots if you can (hist, lines, etc.)
I Challenge: graphically show integration under the different

types of distribution curves (?polygon or ?geom ribbon)


