Probability!

Probability - The fraction of
observations of an event given
multiple repeated independent
observations.

A Feeding Trial Example

Let's say you've offered

50 budworms a leaf to eat.
_ 45 _

45 eat. P(eats) = 55 = 0.9

Now you offer

50 others a treated leaf.

10 eat. P(eats) = 5 = 0.2

Probability of NOT doing something

What is the

probability of not eating if

you are fed a treated leaf?
10

P(! eats) = 1 — 35 =0.8

P(IA) = 1-P(A)
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Probability of Exclusive Events

What if we offered

our budworms both a
treated and untreated leaf?
20 eat the control,

5 eat the treated leaf.

P(eats) = % +2=05

P(A or B) = P(A) + P(B)

Two Events

We offer our budworms a leaf.
45 eat it. Then we offern them
seconds. 20 of the original

45 each the second leaf.

P(eats twice) = 20 = 0.4

— 45,20
=501

P(A and B) = P(A)P(B)

Two Conditional Events

If we are interested in

the probability of eating twice
- i.e. the probability of eating
a second time given that a
budworm ate once, we phrase
that somewhat differently.

P(eatsy|eats;)

So, P(A and B) = P(A)P(B||4)

Probability Tree
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Bayes Theorem

P(A|B)P(B) = P(B|A)P(A)

So...
P(A|B) = HEHREA

Rev. T. Baves

GMO Collateral Damage

Let's say you you had a rare but extremely harmful budworm
munching ravenously through your fields. You've developed a really
effective GMO tobacco leaf to help stop it. It has a 75% kill rate.
And, miraculously, it only has a 15% kill rate of non-budworms.
Given that the budworms make up about 10% of the insects in a
field, what's porportion of dead insects WON'T be budworms?

P(IW|D) =1 - P(W|D)

(v = HeAEn
P(D|W)P(W) 75:

_ 0.75+0.1 —0.357
POW)P(W)+ PIDIW)P(T) — 0.75+0.140.15:08 — V-2

1 —0.357 = 0.643 - the majority of the dead!

Why are we talking about this??

As we test hypotheses in a frequentist framework, we'll be asking
about the probability of observing data given that a hypothesis is
true - P(Data ||Hypothesis).

Distributions!

(when a point probabilty just ain’t enough)
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Frequency Distributions Make Intuitive Sense

#of Times Observed
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Frequencies Can be Turned Into Probabilities

HorBirgs

Just divide by total # of observations
But - we have binned observations...

Frequencies of Individual Observations

#of Times Observed

1
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Can we turn these into probabilities?

Probabilities of Individual Measurements

Probability

0 20 00 600
# of Birds

Many probabilities small, and what about the gaps?



Continuous Probability Distributions
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Probability Density
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Any individual observation has a probability density.

Probability as Integral Under the Curve

Probabily Densiy
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We obtain probabilities of observations between a range of values
by integrating the distribution over selected values.

The Normal Distribution

Proabilty Densiy.

mean=0, sd=1

>

>

>

Defined by it's mean
and standard
deviation.

Y ~N(u, o)
Single mode
Symmetric

67% of Values within 1 SD

41 mean=0, sd=1

Proability Density




95% of Values within 2 (1.96) SD

4+ mean=0, sd=1

Proability Density

How to Get A Probability Density in R

4+ mean=0, sd=1

Proability Density

dnorm(Y, mean = 0, sd = 1)

The Probability of a Value or More Extreme Value

41 mean=0, sd=1

Proability Density

<o-

pnorm(Y, mean = 0, sd = 1)

The Cummulative Distribution/Quantile Function
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quorm(p, mean = 0, sd = 1)



The Cummulative Distribution/Quantile Function The Lognormal Distribution

pnrm an dqnorm are the inverse of one another

pnorm(-1) » An exponentiated normal

» Defined by the mean and

## [1] 0.1587 §.. standard deviation of its log.
qnorm (pnorm(-1)) H > Y "LN(tiog, Tiog)
LS » Generated by multiplicative
## [1] -1
processes
qnorm(0.025) T § E#
dlnorn(Y, meanlog = 0, sdlog = 1)
## [1] -1.96
The Gamma Distribution Waiting for more events
020~ Shape = 2, scale = 2
» Defined by number of
events(shape) average time .| Shape=slscale=2
ass to an event (scale) -
> Can also use rate (1/scale) H ol
> Y “G(shape, scale) g
» Think of time spent waiting H
oo for a bus to arrive o0s-
soos e s
dgamna(Y, shape = 2, scale = 2)
000-




Longer average time per event

00 Shape = 2, scale = 2

Shape = 2, scale =3

Proability Density

The Poisson Distribution

Proabilty Density
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> Defined by A - the
mean and variance

» Y ~ P(lambda)

dpois(Y, lambda = 5)

When Lambda is Large, Approximately Normal

Proability Density

The Binomial Distribution

Proabily Density

> Results from multiple
coin flips

» Defined by size (# of
flips) and prob
(probability of heads)

> Y ~ B(size, prob)

» bounded by 0 and size

dpois(Y, size, prob)



Increasing Probability Shifts Distribution
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Proability Density
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The Negative Binomial Distribution

Proabilty Density
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» Distribution of
number of failures
before n number of
successes in k trials

v

Or mean # of counts,
/1, with an
overdispersion
parameter, size

> Y " NB(p, size)

dnbin(Y, mu, size)

Exercise
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Explore the distributions we have discussed

Examine how changing parameters shifts the output of
probability function

Compare curves generated using density functions (e.g.,
dnorm) and large number of random draws (e.g. from rnorm)
Overlay these in plots if you can (hist, lines, etc.)

Challenge: graphically show integration under the different
types of distribution curves (?polygon or ?geom_ribbon)




