Sample Properties \& Simulation

But first, a gratuitous advertisement

\# SciFund CHALLENGE

http://scifundchallenge.org
What is \#SciFund?

- Crowdfunding your research (avg project \$1500)
- An opportunity to try your hand at outreach
- Training in video and communication
- Signup by Oct. 8th

The anatomy of a simulation

1) Create a vector of sample sizes you want to iterate over
$\mathrm{n}<-\operatorname{rep}(1: 400$, times $=4)$

The anatomy of a simulation

2) Create a blank vector of means
m <- rep(NA, times $=$ length $(n))$
length gets length of a vector

The anatomy of a simulation
3) The For Loop

```
for (i in 1:length(n)) {
    m[i] <- mean(sample(population, size = n[i]))
}
```

- i is an index to iterate over
- the values of i are from the vector 1:length(n)

The anatomy of a simulation

4) Plot it
```
plot(n, m, xlab = "size", ylab = "mean")
```


Precision plateaus around 50 .

Exercise

- Write a for loop that calculates the first 15 numbers of the fibonacci sequence
1, 1, 2, 3, 5, 7, 9...
(Challenge: do it with a starting vector of only NA's)
(hint - create a blank vector, but with the first two entries as 1) (hint $-\mathrm{aVec}[\mathrm{i}+1]$ is aVec[2] if $\mathrm{i}=1$)

Exercise

Sample Properties: Variance

```
# start with a blank vector with some 1's
fibVec <- c(1, 1, rep(NA, 13))
# now loop
for (i in 3:15) {
    fibVec[i] <- fibVec[i - 1] + fibVec[i - 2]
}
fibVec
\#\# [1] 11 \begin{tabular}{llllllllllllll} 
& 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 & 144 & 233 & 377
\end{tabular}
## [15] 610
```


Sample Properties: Standard Deviation

$$
s=\sqrt{s^{2}}
$$

- Units the same as the measurement
- If distribution is normal, 67% of data within 1 SD
- 95% within 2 SD
- σ if describing the population

How variable was that population?

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}{n-1}
$$

- Sums of Squares over n-1
- n-1 corrects for both sample size and sample bias
- σ^{2} if describing the population
- Units in square of measurement...

Sample Properties: Skew

Right-Skewed
Skew calculated using additional moments (think sums of squares, but cubed)

Sample Properties: Mode

This highest point on a frequency plot.

Sample Properties: Median

This middle value of a dataset.

Sample Properties: Median

We obtain the median by sorting and picking the middle value.

```
sort(bird$Count)
## [1] [rrrrrrrrrrrrrrrrrrrar
## [15] [llllllllllllllllll
```



```
## [43] 625
nrow(bird) #this is the # of rows in the data frame
## [1] 43
sort(bird$Count) [22]
## [1] 18
```

Percentiles, Quantiles, Quartiles, and all that

1. Sort a data set
2. The index of the ith value minus 0.5 divided by n is its quantile
3. Quantile * 100 is the percentile
4. Quartiles are those points that divide data into 4 equal chunks (25th, 50th, and 75 th percentile)

Percentiles, Quantiles, Quartiles, and all that
sort(bird\$Count)

```
## [1] [rrrrrrrrrrrrrrrrrr
## [15] [llllllllllllllllllll
## [29] 59 64 67 77 128 135 148
## [43] 625
```


Boxplots to Represent Quartile Information

```
boxplot(bird$Count, horizontal = T)
```


Whiskers show 1.5^{*} interquartile range, Points show outliers

Variation in Sample Estimates

Remember Samples and Populations?

We've seen that we get variation in point estimates at any sample size

Remember Samples and Populations?

How representative of our population are the estimates from our sample?

Exercise: Variation in Estimation

- Consider a population with some distribution (rnorm, runif, rgamma)
- Think of the mean of one sample as an individual replicate
- Take many (50) 'replicates' from this population of means
- What does the distribution of means look like? Use hist
- How does it depend on sample size (within replicates) or distribution type?
Extra: Show the change in distributions with sample size in one figure.

Central Limit Theorem

Central Limit Theorem Simulation

The distribution of means converges on normality


```
set.seed(697)
n <- 3
mvec <- rep(NA, times = 100)
# simulate sampling events!
for (i in 1:length(mvec)) {
    mvec[i] <- mean(runif(n, 0, 100))
}
hist(mvec, main = "n=3")
```


Estimating Variation Around a Mean

Great, so, if we can draw many replicated means from a larger population, we can the standard deviation of an estimate!

This standard deviation of the estimate of the mean is the Standard Error.

But for a single study, we only have one sample...

A Bootstrap Simulation Approach to Standard Error

- Our sample is representative of the entire population
- Therefore, we can resample it with replacement for 1 simulated sample
- We use our sample size as the new sample size as well

We set the replace argument in sample = TRUE
Try sampling from the bird data with replacement.

A Bootstrap Simulation Approach to Standard Error

sample(bird\$Count, replace $=T$, size $=$ nrow(bird))

\#\# [1]	23	135	1	23	59	4	67	15	3	1	135	13	152	128
\#\# [15]	67	148	7	1	3	2	67	1	23	3	300	64	2	282
\#\# [29]	297	33	297	2	25	128	128	173	14	64	1	33	2	297
\#\# [43]	282													

sample(bird\$Count, replace $=T$, size $=$ nrow(bird))
\#\# [1] $297 \quad 2 \begin{array}{lllllllllllll} & 625 & 230 & 13 & 33 & 25 & 12 & 4 & 28 & 297 & 2 & 12 & 7\end{array}$
\#\# [15] $\begin{array}{lllllllllllllll} & 3 & 1 & 18 & 28 & 297 & 1 & 282 & 15 & 300 & 148 & 23 & 2 & 33 & 1\end{array}$
\#\# [29] $625 \quad 282$
\#\# [43] 77

Standard Error

$$
S E_{\bar{Y}}=\frac{s}{\sqrt{n}}
$$

\bar{Y} - sample mean
 s - sample standard deviation
 n - sample size

95\% Confidence Interval and SE

- Recall that 95% of the data in a sample is within 2SD of its mean
- So, 95% of the times we sample a population, the true mean will lie within 2SE of our estimated mean
- This is the 95% Confidence Interval

$$
\bar{Y}-2 S E \leq \mu \leq \bar{Y}+2 S E
$$

Exercise: 95\% Confidence Interval

$$
\bar{Y}-2 S E \leq \mu \leq \bar{Y}+2 S E
$$

- Draw 20 simulated samples with $\mathrm{n}=10$ from a normal distribution of mean 0
- Calculate the upper and lower confidence interval for each
- Compare the $95 \% \mathrm{Cls}$ to the true value of the mean
- Extra: graph it with segments

Tip: To bind two vectors together as columns, use cbind

Exercise: 95\% Confidence Interval

```
set.seed(697)
n <- 20
upperCIvec <- rep(NA, n)
lowerCIvec <- rep(NA, n)
# loop and calculate the 95% CI
for (i in 1:n) {
    samp <- rnorm(10)
    upperCIvec[i] <- mean(samp) + 2* sd(samp)/sqrt(n)
    lowerCIvec[i] <- mean(samp) - 2 * sd(samp)/sqrt(n)
}
```

Exercise: 95\% Confidence Interval

Exercise: 95\% Confidence Interval
\# examine the numbers
cbind(upperCIvec, lowerCIvec) [1:10,]

\#\#		upperCIvec	lowerCIvec
\#\#	$[1]$,	0.75237	-0.09638
\#\#	$[2]$,	0.39117	-0.66417
\#\#	$[3]$,	0.38746	-0.81584
\#\#	$[4]$,	0.67183	-0.14438
\#\#	$[5]$,	0.23227	-0.30878
\#\#	$[6]$,	-0.15508	-1.25684
\#\#	$[7]$,	0.28960	-0.41992
\#\#	$[8]$,	0.29285	-0.83584
\#\#	$[9]$,	0.46890	-0.18128
\#\#	$[10]$,	-0.05229	-0.84528

Variation in Other Estimates

- Many SEs and Cls of estimates have formulae and well understood properties
- For those that do not, we can bootstrap the SE of any estimate - e.g., the median
- Bootstrapped estimates (mean of simulated replicates) can be used to assess bias
- Bootstrapping is not a panacea - requires a good sample size to start

