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But first, a gratuitous advertisement

http://scifundchallenge.org

What is #SciFund?
I Crowdfunding your research (avg project $1500)
I An opportunity to try your hand at outreach
I Training in video and communication
I Signup by Oct. 8th

Loops: Simulation to Estimate Precision
Last time...
How does sample size influence precision of our estimate of the
mean?
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The anatomy of a simulation

1) Create a vector of sample sizes you want to iterate over

n <- rep(1:400, times = 4)

http://scifundchallenge.org


The anatomy of a simulation

2) Create a blank vector of means

m <- rep(NA, times = length(n))

length gets length of a vector

The anatomy of a simulation

3) The For Loop

for (i in 1:length(n)) {
m[i] <- mean(sample(population, size = n[i]))

}

I i is an index to iterate over
I the values of i are from the vector 1:length(n)

The anatomy of a simulation

4) Plot it

plot(n, m, xlab = "size", ylab = "mean")
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Precision plateaus around 50.

Exercise

I Write a for loop that calculates the first 15 numbers of the
fibonacci sequence

1, 1, 2, 3, 5, 7, 9...
(Challenge: do it with a starting vector of only NA’s )

(hint - create a blank vector, but with the first two entries as 1)
(hint - aVec[i+1] is aVec[2] if i=1)



Exercise

# start with a blank vector with some 1's
fibVec <- c(1, 1, rep(NA, 13))

# now loop
for (i in 3:15) {

fibVec[i] <- fibVec[i - 1] + fibVec[i - 2]
}

fibVec

## [1] 1 1 2 3 5 8 13 21 34 55 89 144 233 377
## [15] 610

Sample Properties: Variance

How variable was that population?

s2 =

n∑
i=1

(Yi − Ȳ )2

n−1

I Sums of Squares over n-1
I n-1 corrects for both sample size and sample bias
I σ2 if describing the population
I Units in square of measurement...

Sample Properties: Standard Deviation

s =
√
s2

I Units the same as the measurement
I If distribution is normal, 67% of data within 1 SD
I 95% within 2 SD
I σ if describing the population

Sample Properties: Skew
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Right-Skewed
Skew calculated using additional moments (think sums of squares,
but cubed)



Sample Properties: Kurtosis
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Sample Properties: Mode

Mode
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This highest point on a frequency plot.

Sample Properties: Median

Median =  18
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This middle value of a dataset.

Sample Properties: Median
We obtain the median by sorting and picking the middle value.
sort(bird$Count)

## [1] 1 1 1 1 1 2 2 2 2 3 3 4 5 7
## [15] 7 10 12 13 14 15 16 18 23 23 25 28 33 33
## [29] 59 64 67 77 128 135 148 152 173 173 230 282 297 300
## [43] 625

nrow(bird) #this is the # of rows in the data frame

## [1] 43

sort(bird$Count)[22]

## [1] 18



Sample Properties: Median

The midpoint of the data-set is the 50th percentile!

Median =  18
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Percentiles, Quantiles, Quartiles, and all that

1. Sort a data set
2. The index of the ith value minus 0.5 divided by n is its

quantile
3. Quantile * 100 is the percentile
4. Quartiles are those points that divide data into 4 equal chunks

(25th, 50th, and 75th percentile)

Percentiles, Quantiles, Quartiles, and all that

sort(bird$Count)

## [1] 1 1 1 1 1 2 2 2 2 3 3 4 5 7
## [15] 7 10 12 13 14 15 16 18 23 23 25 28 33 33
## [29] 59 64 67 77 128 135 148 152 173 173 230 282 297 300
## [43] 625

Boxplots to Represent Quartile Information

boxplot(bird$Count, horizontal = T)
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Whiskers show 1.5 * interquartile range, Points show outliers



Variation in Sample Estimates

Remember Samples and Populations?
How representative of our population are the estimates from our
sample?
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Remember Samples and Populations?
We’ve seen that we get variation in point estimates at any sample
size
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What does that variation look like?

Exercise: Variation in Estimation

I Consider a population with some distribution (rnorm, runif,
rgamma)

I Think of the mean of one sample as an individual replicate
I Take many (50) ‘replicates’ from this population of means
I What does the distribution of means look like? Use hist
I How does it depend on sample size (within replicates) or

distribution type?
Extra: Show the change in distributions with sample size in one
figure.



Central Limit Theorem

The distribution of means converges on normality
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Central Limit Theorem Simulation

set.seed(697)
n <- 3
mvec <- rep(NA, times = 100)
# simulate sampling events!
for (i in 1:length(mvec)) {

mvec[i] <- mean(runif(n, 0, 100))
}
hist(mvec, main = "n=3")

Estimating Variation Around a Mean

Great, so, if we can draw many replicated means from a larger
population, we can the standard deviation of an estimate!

This standard deviation of the estimate of the mean is the
Standard Error.

But for a single study, we only have one sample...

A Bootstrap Simulation Approach to Standard Error

I Our sample is representative of the entire population
I Therefore, we can resample it with replacement for 1

simulated sample
I We use our sample size as the new sample size as well

We set the replace argument in sample = TRUE
Try sampling from the bird data with replacement.



A Bootstrap Simulation Approach to Standard Error

sample(bird$Count, replace = T, size = nrow(bird))

## [1] 23 135 1 23 59 4 67 15 3 1 135 13 152 128
## [15] 67 148 7 1 3 2 67 1 23 3 300 64 2 282
## [29] 297 33 297 2 25 128 128 173 14 64 1 33 2 297
## [43] 282

sample(bird$Count, replace = T, size = nrow(bird))

## [1] 297 2 625 230 13 33 25 12 4 28 297 2 12 7
## [15] 3 1 18 28 297 1 282 15 300 148 23 2 33 1
## [29] 625 282 77 23 12 25 297 2 2 33 230 135 67 18
## [43] 77

Standard Error

SEȲ = s√
n

Ȳ - sample mean
s - sample standard deviation
n - sample size

95% Confidence Interval and SE

I Recall that 95% of the data in a sample is within 2SD of its
mean

I So, 95% of the times we sample a population, the true mean
will lie within 2SE of our estimated mean

I This is the 95% Confidence Interval

Ȳ − 2SE ≤ µ ≤ Ȳ + 2SE

Exercise: 95% Confidence Interval

Ȳ − 2SE ≤ µ ≤ Ȳ + 2SE

I Draw 20 simulated samples with n=10 from a normal
distribution of mean 0

I Calculate the upper and lower confidence interval for each
I Compare the 95% CIs to the true value of the mean
I Extra: graph it with segments

Tip: To bind two vectors together as columns, use cbind



Exercise: 95% Confidence Interval

set.seed(697)
n <- 20
upperCIvec <- rep(NA, n)
lowerCIvec <- rep(NA, n)

# loop and calculate the 95% CI
for (i in 1:n) {

samp <- rnorm(10)
upperCIvec[i] <- mean(samp) + 2 * sd(samp)/sqrt(n)
lowerCIvec[i] <- mean(samp) - 2 * sd(samp)/sqrt(n)

}

Exercise: 95% Confidence Interval

# examine the numbers
cbind(upperCIvec, lowerCIvec)[1:10, ]

## upperCIvec lowerCIvec
## [1,] 0.75237 -0.09638
## [2,] 0.39117 -0.66417
## [3,] 0.38746 -0.81584
## [4,] 0.67183 -0.14438
## [5,] 0.23227 -0.30878
## [6,] -0.15508 -1.25684
## [7,] 0.28960 -0.41992
## [8,] 0.29285 -0.83584
## [9,] 0.46890 -0.18128
## [10,] -0.05229 -0.84528

Exercise: 95% Confidence Interval
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Variation in Other Estimates

I Many SEs and CIs of estimates have formulae and well
understood properties

I For those that do not, we can bootstrap the SE of any
estimate - e.g., the median

I Bootstrapped estimates (mean of simulated replicates)
can be used to assess bias

I Bootstrapping is not a panacea - requires a good sample
size to start


