Sample Properties & Simulation

But first, a gratuitous advertisement

http://scifundchallenge.org

What is #SciFund?

- Crowdfunding your research (avg project \$1500)
- An opportunity to try your hand at outreach
- Training in video and communication
- Signup by Oct. 8th

Loops: Simulation to Estimate Precision

Last time...

How does sample size influence precision of our estimate of the mean?

The anatomy of a simulation

1) Create a vector of sample sizes you want to iterate over

n <- rep(1:400, times = 4)

The anatomy of a simulation	The anatomy of a simulation
<pre>2) Create a blank vector of means m <- rep(NA, times = length(n)) length gets length of a vector</pre>	<pre>3) The For Loop for (i in 1:length(n)) { m[i] <- mean(sample(population, size = n[i])) } i is an index to iterate over the values of i are from the vector I:length(n)</pre>
The anatomy of a simulation	Exercise
The anatomy of a simulation 4) Plot it	Exercise
The anatomy of a simulation 4) Plot it plot(n, m, xlab = "size", ylab = "mean")	Exercise
<pre>The anatomy of a simulation 4) Plot it plot(n, m, xlab = "size", ylab = "mean") </pre>	Exercise • Write a for loop that calculates the first 15 numbers of the fibonacci sequence 1, 1, 2, 3, 5, 7, 9 (Challenge: do it with a starting vector of only NA's) (hint - create a blank vector, but with the first two entries as 1) (hint - aVec[i+1] is aVec[2] if i=1)

Exercise

```
How variable was that population?
    # start with a blank vector with some 1's
    fibVec <- c(1, 1, rep(NA, 13))
                                                                                                        s^{2} = \frac{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}{n-1}
    # now loop
    for (i in 3:15) {
        fibVec[i] <- fibVec[i - 1] + fibVec[i - 2]
                                                                                    Sums of Squares over n-1
    fibVec

    n-1 corrects for both sample size and sample bias

                                                                                    • \sigma^2 if describing the population
    ## [1] 1 1 2 3 5 8 13 21 34 55 89 144 233 377
    ## [15] 610

    Units in square of measurement...

Sample Properties: Standard Deviation
                                                                             Sample Properties: Skew
                                s = \sqrt{s^2}
      Units the same as the measurement

    If distribution is normal, 67% of data within 1 SD

      95% within 2 SD

σ if describing the population

                                                                                  Right-Skewed
```

Sample Properties: Variance

Skew calculated using additional moments (think sums of squares, but cubed)

Sample Properties: Kurtosis

Sample Properties: Mode

This highest point on a frequency plot.

Sample Properties: Median

This middle value of a dataset.

Sample Properties: Median

We obtain the median by sorting and picking the middle value.

sort(bird\$Count)

7 14 15 [15] 10 12 13 16 18 23 23 25 28 33 33 64 67 77 128 135 148 152 173 173 230 282 297 300 [29] 59 ## ## [43] 625

nrow(bird) #this is the # of rows in the data frame

[1] 43

sort(bird\$Count)[22]

[1] 18

Sample Properties: Median

The midpoint of the data-set is the 50th percentile!

Percentiles, Quantiles, Quartiles, and all that

- 1. Sort a data set
- 2. The index of the *ith* value minus 0.5 divided by n is its quantile
- 3. Quantile * 100 is the percentile
- 4. Quartiles are those points that divide data into 4 equal chunks (25th, 50th, and 75th percentile)

Percentiles, Quantiles, Quartiles, and all that

Boxplots to Represent Quartile Information

boxplot(bird\$Count, horizontal = T)

sort(bird\$Count)																
##	[1]	1	1	1	1	1	2	2	2	2	3	3	4	5	7	
##	[15]	7	10	12	13	14	15	16	18	23	23	25	28	33	33	
##	[29]	59	64	67	77	128	135	148	152	173	173	230	282	297	300	
##	[43]	625														

Whiskers show 1.5 * interquartile range, Points show outliers

Variation in Sample Estimates

Remember Samples and Populations?

How representative of our population are the estimates from our sample?

Remember Samples and Populations?

We've seen that we get variation in point estimates at any sample size $% \left({{{\mathbf{x}}_{i}}} \right)$

Exercise: Variation in Estimation

- Consider a population with some distribution (rnorm, runif, rgamma)
- > Think of the mean of one sample as an individual replicate
- Take many (50) 'replicates' from this population of means
- What does the distribution of means look like? Use hist
- How does it depend on sample size (within replicates) or distribution type?

 $\ensuremath{\mathsf{Extra:}}$ Show the change in distributions with sample size in one figure.

A Bootstrap Simulation Approach to Standard Error	Standard Error
<pre>sample(bird\$Count, replace = T, size = nrow(bird)) ## [1] 23 135 1 23 59 4 67 15 3 1 135 13 152 128 ## [15] 67 148 7 1 3 2 67 1 23 3 300 64 2 282 ## [29] 297 33 297 2 25 128 128 173 14 64 1 33 2 297 ## [43] 282 sample(bird\$Count, replace = T, size = nrow(bird)) ## [1] 297 2 625 230 13 33 25 12 4 28 297 2 12 7 ## [15] 3 1 18 28 297 1 282 15 300 148 23 2 33 1 ## [29] 625 282 77 23 12 25 297 2 2 33 230 135 67 18 ## [43] 77</pre>	$SE_{ar{Y}}=-\sqrt{N}$ $ar{Y}$ - sample mean s - sample standard de n - sample size
95% Confidence Interval and SE	Exercise: 95% Confidence Interval
• Recall that 95% of the data in a sample is within 2SD of its mean • So, 95% of the times we sample a population, the <i>true</i> mean will lie within 2SE of our estimated mean • This is the 95% Confidence Interval $\bar{Y} - 2SE \le \mu \le \bar{Y} + 2SE$	$\bar{Y} - 2SE \le \mu \le \bar{Y}$ • Draw 20 simulated samples with ne distribution of mean 0 • Calculate the upper and lower conf • Compare the 95% Cls to the true v • Extra: graph it with segments Tip: To bind two vectors together as co

 $E_{\bar{Y}} = \frac{s}{\sqrt{n}}$

ean dard deviation

 $SE \le \mu \le \bar{Y} + 2SE$

- nples with n=10 from a normal
- d lower confidence interval for each
- to the true value of the mean
- gments

gether as columns, use cbind

Exercise: 95% Confidence Interval

```
set.seed(697)
n <- 20
upperClvec <- rep(NA, n)
lowerClvec <- rep(NA, n)
# loop and calculate the 95% CI
for (i in 1:n) {
    saap <- rnorm(10)
    upperClvec[i] <- mean(samp) + 2 * sd(samp)/sqrt(n)
    lowerClvec[i] <- mean(samp) - 2 * sd(samp)/sqrt(n)
}</pre>
```

Exercise: 95% Confidence Interval

examine the numbers cbind(upperCIvec, lowerCIvec)[1:10,]

##		upperCIvec	lowerCIvec
##	[1,]	0.75237	-0.09638
##	[2,]	0.39117	-0.66417
##	[3,]	0.38746	-0.81584
##	[4,]	0.67183	-0.14438
##	[5,]	0.23227	-0.30878
##	[6,]	-0.15508	-1.25684
##	[7,]	0.28960	-0.41992
##	[8,]	0.29285	-0.83584
##	[9,]	0.46890	-0.18128
##	[10,]	-0.05229	-0.84528

Exercise: 95% Confidence Interval

Variation in Other Estimates

- Many SEs and CIs of estimates have formulae and well understood properties
- For those that do not, we can bootstrap the SE of any estimate - e.g., the median
- Bootstrapped estimates (mean of simulated replicates) can be used to assess bias
- Bootstrapping is not a panacea requires a good sample size to start