

From Factors to Characters and Back Or Just Change Factor Levels... # Or, just change the levels levels(ponds\$site) # instead, you need to do this... ponds\$site <- as.character(ponds\$site) ## [1] "A" "B" "C" "D" "EE" ponds\$site[which(ponds\$site == "EE")] <- "E" levels(ponds\$site) <- c("A", "B", "C", "D", "E") ponds\$site <- factor(ponds\$site) levels(ponds\$site) ## [1] "A" "B" "C" "D" "E" A More Foolproof Level Change... Exercise

ponds\$site[1:10] ## [1] ABCDEABCDE ## Levels: A R C D F You could use which

alternative approach

levels(ponds\$site) <- c(levels(ponds\$site)[1:4], "E")

► Create a factor vector of the letters A thorugh D that repeats 10 times (use rep) ▶ Do the same thing, but with the strings A1, B1, ...D1

Merge these two into a single vector.

Exercise

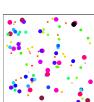
```
# alternative approach
v1 <- factor(rep(c("A1", "B", "C", "D"), 10))
v2 <- factor(rep(c("A1", "B1", "C1", "D1"), 10))
v3 <- factor(c(as.character(v1), as.character(v2)))
v3[1:20]
## [1] A B C D A B C D A B C D A B C D A B C D
## Levels: A A1 B B1 C C1 D D1</pre>
```

Questions?

Sampling Populations

Population = All Individuals

What is a sample?


A sample of individuals in a randomly distributed population.

► Sample is not representative

How can sampling a population go awry?

- Replicates do not have equal chance of being sampled
 Replicates are not is not independent
- Replicates are not is not independent

Bias from Unequal Representation

If you only chose one color, you would only get one range of sizes.

Bias from Unequal Change of Sampling

Spatial gradient in size

Bias from Unequal Change of Sampling

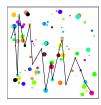
Oh, I'll just grab those individuals closest to me...

Solution: **Stratified** Sampling

Sample over a known gradient, aka **cluster sampling**Can incorporate multiple gradients

Solution: Random Sampling

Two sampling schemes:


- o sampling schemes:
- Random samples chosen using random numbers
 Haphazard samples chosen without any system (careful!)

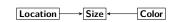
Non-Independence & Haphazard Sampling

What if there are interactions between individuals?

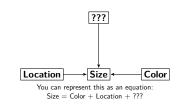
Solution: Chose Samples Randomly

Path chosen with random number generator

Deciding Sampling Design


What influences the measurement you are interested in?

Causal Graph


Stratified or Random?

Do you know all of the influences?

Stratified or Random?

Do you know all of the influences?

Stratified or Random?

- ► How is your population defined?
- ▶ What is the scale of your inference?
- What might influence the inclusion of a replicate?
- ► How important are external factors you know about?
- ► How important are external factors you cannot assess?

Describing a Sample

Exercise

Draw a causal graph of the influences on one thing you measure

How would you sample your population?

Sample Properties: Mean

What is the mean size of individuals in this population?

$$\bar{Y} = \frac{\sum y_i}{n}$$

Sample Properties: Mean

$$\bar{Y} = \frac{\sum_{i=1}^{n} y_i}{n}$$

 \bar{Y} - The average value of a sample

 x_i - The value of a measurement for a single individual n - The number of individuals in a sample

 μ - The average value of a population (Greek = population, Latin = Sample)

R: Sample Size and Estimate Precision

As n increases, does your estimate get closer to the true mean?

1. Taking a mean

mean(c(1, 4, 5, 10, 15))

[1] 7

R: Sample Size and Estimate Precision

As n increases, does your estimate get closer to the true mean?

2. Mean from a random population mean(runif(n = 500, min = 0, max = 100))

[1] 47.53

runif draws from a Uniform distribution

3. Sampling from a simulated population

set.seed(5000)

population <- runif(400, 0, 100) mean(sample(population, size = 50))

R: Sample Size and Estimate Precision

[1] 46.83

set.seed ensures that you get the same random number every time

sample draws a sample of a defined size from a vector

As n increases, does your estimate get closer to the true mean?

Exercise: Sample Size and Estimate Precision

As n increases, does your estimate get closer to the true mean?

- 1. Use runif (or rnorm, if you're feeling saucy) to simulate a population
- 2. How does the repeatability of the mean change as you change the sample size?

Exercise: Sample Size and Estimate Precision

As n increases, does your estimate get closer to the true mean?

set.seed(5000)
population <- runif(n = 400, min = 0, max = 100)
mean(sample(population, size = 3))</pre>

[1] 64.52
mean(sample(population, size = 3))

[1] 54.91

Exercise: Sample Size and Estimate Precision

As n increases, does your estimate get closer to the true mean?

[1] 45.06

mean(sample(population, size = 100))

[1] 45.96

Sample Properties: Variance

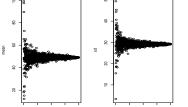
How variable was that population?

$$s^2 = \frac{\sum\limits_{i=1}^n (Y_i - \bar{Y})^2}{n-1}$$

- ► Sums of Squares over n-1
- ▶ n-1 corrects for both sample size and sample bias
- $\triangleright \sigma^2$ if describing the population
- ▶ Units in square of measurement...

Sample Properties: Standard Deviation

- ▶ If distribution is normal, 67% of data within 1 SD, 95% within 2
- σ if describing the population


size

Next time...

 $s = \sqrt{s^2}$ Units the same as the measurement

- mean?

size

Exercise: Sample Size and Estimated Sample Variation

1. Repeat the last exercise, but with the functions sd or var

2. Do you need as many samples for a precise estimate as for the

