

A Brief Introduction to Bayesian Statistics

Frameworks of Statistical Inference

- Frequentist Hypothesis Testing: Evaluate the probability of observing the data, or more extreme data, given that the a hypothesis is true assuming that there is a single fixed True value for each parameter.
- Likelihood & Information Theoretic: Given the data at hand, compare multiple alternative hypotheses and evaluate the relative weight of evidence for each. Parameters again assumed to have True values.
- Bayesian: Using prior information and data, evaluate the degree of belief in specific hypotheses, recognizing that data is one realization of some distribution of a parameter.

Bayes Theorem

Bayes Theorem

$$p(Hypothesis|Data) = \frac{P(Data|Hypothesis)p(Hypothesis)}{p(Data)}$$

Bayes Theorem

$$p(\theta|X) = \frac{p(X|\theta)P(\theta)}{p(X)}$$

Bayes Theorem in Action

http://xkcd.com/1132/

Baves Theorem in Action

$$p(SunExplodes|Yes) = \frac{p(Yes|SunExplodes)p(SunExplodes)}{n(Yes)}$$

We know/assume:

p(Sun Explodes) = 0.0001, P(Yes | Sun Explodes) = 35/36

We can calculate:

= 35/36 * 0.0001 + 1/36 * 0.9999 = 0.0277775

 $p(Yes) = P(Yes \mid Sun Explodes)p(Sun Explodes) + P(Yes \mid Sun$ Doesn't Explode)p(Sun Doesn't Explodes)

Baves Theorem in Action

$$p(SunExplodes|Yes) = \frac{p(Yes|SunExplodes)p(SunExplodes)}{p(Yes)}$$

$$p(SunExplodes|Yes) = \frac{0.0001*35/36}{0.028} = 0.0035$$

Incorporating Prior Information about the Sun Exploding gives us a very different answer

Note, we can also explicitly evaluate the probability of an alternate hypothesis - p(Sun Doesn't Explode | Yes)

credit: Amelia Hoover

The Marginal Distribution in the Denominator

$$p(\theta|X) = \frac{p(X|\theta)P(\theta)}{\sum_{i=0}^{j} p(X|\theta_i)p(\theta_i)}$$

What are alternate parameter values but alternate hypotheses?

Denominator - marginal distribution - becomes an integral of likelihoods if θ is continuous. It normalizes the equation to be between 0 and 1.

How do we Choose a Prior?

- A prior is a powerful tool, but it can also influence our results of chosen poorly. This is a highly debated topic.
- Conjugate priors make some forms of Bayes Theorem analytically solveable
- If we have objective prior information from pilot studies or the literature - we can use it to obtain a more informative posterior distribution
- ► If we do not, we can use a weak or flat prior (e.g., N(0,1000)). Note: constraining the range of possible values can still be weakly informative - and in some cases beneficial

The Influence of Priors

Here's the posterior distribution drawn using the same sample but in one case with a weak prior, and one a strong prior.

Priors and Sample Size

The influence of priors decreases with same size. A large sample size 'overwhelms' the prior.

Evaluation of a Posterior: Frequentist Confidence Intervals

In Frequentist analyses, the 95% Confidence Interval of a parameter is the region in which, were we to repeat the experiment an infinite number of times, the *true value* would occur 95% of the time. For normal distributions of parameters:

$$\hat{\beta} - t(\alpha, df)SE_{\beta} \le \beta \le \hat{\beta} + t(\alpha, df)SE_{\beta}$$

Evaluation of a Posterior: Bayesian Credible Intervals

In Bayesian analyses, the **95% Credible Interval** is the region in which we find 95% of the possible parameter values. The observed parameter is drawn from this distribution. For normally distributed parameters:

$$\hat{\beta} - 2 * \hat{SD} \le \hat{\beta} \le \hat{\beta} + 2 * \hat{SD}$$

where SD is the SD of the posterior distribution of the parameter β . Note, for other types of parameters, the distribution may be different.

Bayes Theorem Expanded

$$p(\theta|X) = \frac{p(X|\theta)P(\theta)}{\displaystyle\sum_{i=0}^{j} p(X|\theta_i)p(\theta_i)}$$
 - Algebraically Solvable

$$p(\theta|X)=\frac{p(X|\theta)P(\theta)}{\int p(X|\theta)p(\theta)d\theta}$$
 - Analytically Solveable for Conjugate Priors

$$p(\theta|X) = \frac{\int p(X|\theta)P(\theta|\eta)p(\eta)d\eta}{\int \int p(X|\theta)p(\theta)d\theta d\eta} \text{ - Hierarchical Model: need numerical integration approach with random hyperparameters}$$

Markov Chain Monte Carlo Sampling (MCMC)

Markov Chain Monte Carlo Sampling (MCMC)

If we cannot analytically solve a distribution, we can still simulate from it:

- ▶ Chose a set of starting values X at t=0
- Chose a random set of parameters, Y, from the distribution parameterized by X
- Select a uniorm random number between 0 and 1, U
 If U ≤ f(X,Y), X(t+1) = Y. Otherwise, X(t+1) = X.
- ▶ Rinse and repeat

Markov Chain Monte Carlo Sampling (MCMC)

This is a time series. To use it for inference to sample from the final stationary distribution:

- ▶ Discard a 'burn in' set of samples
- ▶ 'Thin' your chain to reduce temporal autocorrelation
- Examine chain for convergence on your posterior distribution
- ► Evaluate multiple chains to ensure convergence to a single distribution

Many different samplers using different decision rules for f. We use the Gibbs Sampler commonly.

Software Options for MCMC

- ► WinBUGS http://www.mrc-bsu.cam.ac.uk/bugs/
- ► OpenBUGS http://www.openbugs.info/w/
- ▶ JAGS http://mcmc-jags.sourceforge.net/
- ► STAN http://mc-stan.org/
- ► STAN http://mc-stan.org/

 ► MCMCglmm in R
- ► MCMCpack in R

BUGS code for a Simple Linear Regression

```
model {
    # Prior
        alpha - dnorm(0,0.001)
        beta - dnorm(0,0.001)
        sigma - dunif(0,100)
    # Likelihood
    for (i in 1:n) {
        y(i) - dnorm(u[i],tau)
        mu[i] <- alpha + beta*x[i]
    }
}</pre>
```

Example: The RIKZ Beaches and Tide Height

NAPMod <- MCMCglmm(Richness ~ NAP, data=rikz, verbose=F)

rikz <- read.csv("./data/rikz.csv")
rikz\$Beach <- factor(rikz\$Beach)

library(MCMCglmm)

Plots of Chains

Plots of Chains

Sometimes Problems are Obvious

Did you Thin Enough?

0.030775 -0.009913

0.003102 -0.015534

autocorr(NAPMod\$Sol) # , , (Intercept) (Intercept) 1.000000 -0.338722

Lag 0

Lag 10

Lag 50

```
-0.050866 0.031194
    # Lag 100
    # Lag 500
               -0.077621 0.031906
      , , NAP
              (Intercept)
    # Lag 0
                -0.338722 1.00000
    # Lag 10
                -0.008204 0.01056
    # Lag 50
                -0.008502 0.03985
    # Lag 100
               0.038907 -0.01880
    # Lag 500
                0.046233 0.01864
Did You Converge: Assessing with Multiple Chains
    plot(chainList)
                        Trace of (Intercept)
                                            densityDiofaiti(of-(lytericity); width)
```

Trace of NAP

Did You Converge: Assessing with Multiple Chains

NAPMod2 <- MCMCglmm(Richness ~ NAP, data=rikz, verbose=F)

NAPMod3 <- MCMCglmm(Richness ~ NAP, data=rikz, verbose=F)

chainList <- mcmc.list(NAPMod\$Sol, NAPMod2\$Sol, NAPMod3\$Sol)

The Gelman-Rubin Diagnostic

density.deDaris(ky-c), NARh = width)

Diagnostic should be close to 1.

Multivariate psrf

library(coda)

```
gelman.diag(chainList)
# Potential scale reduction factors:
              Point est. Upper C.I.
# (Intercept)
                               1.01
# NAP
                               1 00
```


The Bayesian Approach to MMI: The DIC

 $DIC = D(\theta) + nD$ from Spiegelhalter et al 2002

 $D(\theta)$ is the average deviance and pD = Effective # of parameters

 $pD = D(\bar{\theta}) - D(\bar{\theta})$

NAPMod\$DTC # [1] 260

Strong Priors Can Alter Parameters

summary(NAPMod)\$solutions post.mean 1-95% CI u-95% CI eff.samp pMCMC # (Intercept) 6.710 7.997 1000 0.001 # NAP -2.849 -4.019 -1.536 1000 0.001

summary(NAPMod Prior)\$solutions

post.mean 1-95% CI u-95% CI eff.samp pMCMC # (Intercept) 6.696 5.355 7.863 1000 0.001 # NAP -2.884 -3.838 -1.917 1000 0.001

Setting Priors

```
prior<-list(B=list(mu=c(0,-3),V=diag(c(1e+10, 1))))
```

NAPMod_Prior <- MCMCglmm(Richness ~ NAP, data=rikz, verbose=F, prior=prior)

Random Effects

MCMCglmm allows random effects & family much like nlme

MCMCglmm(v ~ x. random = z + x:z)

Implies that the intercept varies randomly by z and the slope of x varies by z. Equivalent to $(1+x \mid z)$

Exercise: Off the MCMC Shorline
 Fit a model with a NAP*angle1 interaction and random effect of beach Evaluate the model and whether it is fit well Compare the coefficients to a model with a strong prior that the interaction is -5.