—

Frameworks of Statistical Inference

» Frequentist Hypothesis Testing: Evaluate the probability of
observing the data, or more extreme data, given that the a
hypothesis is true assuming that there is a single fixed True
value for each parameter.

v

Likelihood & Information Theoretic: Given the data at hand,
compare multiple alternative hypotheses and evaluate the
relative weight of evidence for each. Parameters again
assumed to have True values.

v

Bayesian: Using prior information and data, evaluate the
degree of belief in specific hypotheses, recognizing that data is
one realization of some distribution of a parameter.

A Brief Introduction to Bayesian Statistics

Bayes Theorem Bayes Theorem

P(Data|Hypothesis)p(Hypothesis)

p(Hypothesis|Data) = p(Data)
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Bayes Theorem

_p(XI0)PO)

po1x) =" 0

Bayes Theorem in Action

http://xkecd.com/1132/

Bayes Theorem in Action

p(Yes|SunExplodes)p(SunEzplodes)

Todec| ¢) —
p(SunExp |Yes) = W(Ves)

We know/assume:
p(Sun Explodes) = 0.0001, P(Yes | Sun Explodes) = 35/36

We can calculate:
p(Yes) = P(Yes | Sun Explodes)p(Sun Explodes) + P(Yes | Sun
Doesn’t Explode)p(Sun Doesn’t Explodes)

= 35/36 * 0.0001 + 1/36 * 0.9999 = 0.0277775

credit: Amelia Hoover

Bayes Theorem in Action

p(Yes|SunExplodes)p(SunExplodes)
p(Yes)

p(SunExplodes|Yes) =

0.0001 * 35/36
0.028
Incorporating Prior Information about the Sun Exploding gives us a

very different answer

p(SunEzxplodes|Yes)

= 0.0035

Note, we can also explicitly evaluate the probability of an alternate
hypothesis - p(Sun Doesn't Explode | Yes)


http://xkcd.com/1132/
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The Marginal Distribution in the Denominator How do we Choose a Prior?

» A prior is a powerful tool, but it can also influence our results
01%) p(X|0)P(0) of chosen poorly. This is a highly debated topic.
7 T J Conjugate priors make some forms of Bayes Theorem
ZP(X‘@)F(@) analytically solveable
-0
) If we have objective prior information - from pilot studies or
the literature - we can use it to obtain a more informative
posterior distribution

v

v

What are alternate parameter values but alternate hypotheses?

Denominator - marginal distribution - becomes an integral of
likelihoods if 6 is continuous. It normalizes the equation to be
between 0 and 1.

If we do not, we can use a weak or flat prior (e.g., N(0,1000)).
Note: constraining the range of possible values can still be
weakly informative - and in some cases beneficial

v

The Influence of Priors Priors and Sample Size
Here's the posterior distribution drawn using the same sample - The influence of priors decreases with same size. A large sample
but in one case with a weak prior, and one a strong prior. size 'overwhelms’ the prior.
Mean =0 Strong Prior: N(0,0.1), True Mean = 1

densiy
1

Estimate of the Mean Estmate of the Mean




—

Evaluation of a Posterior: Frequentist Confidence Intervals

In Frequentist analyses, the 95% Confidence Interval of a
parameter is the region in which, were we to repeat the experiment
an infinite number of times, the true value would occur 95% of the
time. For normal distributions of parameters:

B —t(a,df)SEs < 8 < B+ t(a,df)SEs

Evaluation of a Posterior: Bayesian Credible Intervals

In Bayesian analyses, the 95% Credible Interval is the region in
which we find 95% of the possible parameter values. The observed
parameter is drawn from this distribution. For normally distributed
parameters:

B—2+SD<B<B+2+5D

where SD is the SD of the posterior distribution of the parameter
3. Note, for other types of parameters, the distribution may be
different.

Bayes Theorem Expanded

p(0]X) = —2XOLO_ _ Ajgebraically Solvable

> p(X16:)p(6)

=0
} _ _nX0re) ) )
p(0|1X) = ToXon0d Analytically Solveable for Conjugate
Priors

p(0|X) = [ pxi0 POty _ Hierarchical Model: need numerical

integration approach with random hyperparameters

Markov Chain Monte Carlo Sampling (MCMC)
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Markov Chain Monte Carlo Sampling (MCMC)

If we cannot analytically solve a distribution, we can still simulate
from it:

» Chose a set of starting values X at t=0

v

Chose a random set of parameters, Y, from the distribution
parameterized by X

v

Select a uniorm random number between 0 and 1, U
If U < f(XY), X(t+1) = Y. Otherwise, X(t+1) = X.
Rinse and repeat

v

v

Markov Chain Monte Carlo Sampling (MCMC)

This is a time series. To use it for inference to sample from the
final stationary distribution:

v

Discard a 'burn in’ set of samples

v

"Thin" your chain to reduce temporal autocorrelation

v

Examine chain for convergence on your posterior distribution

v

Evaluate multiple chains to ensure convergence to a single
distribution

Many different samplers using different decision rules for f. We use
the Gibbs Sampler commonly.

Software Options for MCMC

» WinBUGS http://www.mrc-bsu.cam.ac.uk/bugs/
» OpenBUGS http://www.openbugs.info/w/

» JAGS http://mcmc-jags.sourceforge.net/

> STAN http://mc-stan.org/

» MCMCglmm in R

» MCMCpack in R

BUGS code for a Simple Linear Regression

model {

# Prior
alpha - dnorm(0,0.001)
beta ~ dnorm(0,0.001)
sigma ~ dunif(0,100)

# Likelihood

for (i in 1:m){
y[i]l ~ dnorm(mu[il,tau)
mul[i] <- alpha + beta*x[i]

}
b


http://www.mrc-bsu.cam.ac.uk/bugs/
http://www.openbugs.info/w/
http://mcmc-jags.sourceforge.net/
http://mc-stan.org/
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Example: The RIKZ Beaches and Tide Height

rikz <- read.csv( )
rikz$Beach <- factor(rikz$Beach)

#
1ibrary (MCHCglmm)
NAPMod <- MCMCglmm(Richness ~ NAP, data=rikz, verbose=F)

Plots of Chains

plot (NAPMod$Sol)
Trace of (tercept) sty Defauitpor ouareps i)
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Plots of Chains

plot (NAPMod$VCV)
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Did you Thin Enough?

autocorr (NAPMod$Sol)
#, , (Intercept)

#

# (Intercept)
# Lag 0 1.000000
# Lag 10 0.030775
# Lag 50 0.003102
# Lag 100  -0.050866
# Lag 500 -0.077621
#

#, , NAP

#

* (Intercept)
# Lag 0 -0.338722
# Lag 10 -0.008204
# Lag 50  -0.008502
# Lag 100 0.038907
# Lag 500  0.046233

-0.338722
-0.009913
-0.015534
0.031194
0.031906

NAP
1.00000
0.01056
0.03985

-0.01880
0.01864

Did You Converge: Assessing with Multiple Chains

NAPMod2 <- MCMCglmm(Richness ~ NAP, data=rikz, verbose=F)
NAPMod3 <- MCMCglmm(Richness ~ NAP, data=rikz, verbose=F)

#

library(coda)

chainList <- mcmc.list(NAPMod$Sol, NAPMod2$Sol, NAPMod3$Sol)

Did You Converge: Assessing with Multiple Chains

plot(chainList)
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The Gelman-Rubin Diagnostic

Diagnostic should be close to 1.
gelman.diag(chainList)

# Potential scale reduction factors:
#

# Point est. Upper C.I.
# (Intercept) 1 1.01
# NAP 1 1.00
#

# Multivariate psrf

#

#

1
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Evaluating Results

sunmary (NAPMod)

#
# Iterations = 3001:12991
# Thinning interval = 10
# Sample size = 1000

Evaluating Results

summary (NAPMod)

# R-structure: “units

#

# post.mean 1-95% CI u-95% CI eff.samp
# units 18.2 11.4 26.7 867
#

Evaluating Results

sunmary (NAPMod)

# Location effects: Richness ~ NAP

#

# post.mean 1-95% CI u-95% CI eff.samp pMCMC
# (Intercept) 6.71 5.34 8.00 1000 <0.001
# NAP -2.85 -4.02 -1.54 1000 <0.001

Your 95% Credible Interval

HPDinterval (NAPMod$Sol)

# lower upper
# (Intercept) 5.345 7.997
# NAP -4.019 -1.536
# attr(,"Probability")

# [1] 0.95
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The Bayesian Approach to MMI: The DIC Setting Priors

DIC = D(6) + pD
from Spiegelhalter et al 2002
prior<-1ist(B=list (mu=c(0,-3) ,V=diag(c(1e+10, 1))))

7o . _ } #
D(0) is the average deviance and pD = Effective # of parameters NAPMod_Prior <- MCHCglmm(Richness ~ NAP,
»D = D(6) - D(@) data=rikz, verbose=F, prior=prior)
NAPMod$DIC
# [1] 260
B
Strong Priors Can Alter Parameters Random Effects

summary (NAPMod) $solutions
MCMCglmm allows random effects & family much like nlme

# post.mean 1-95% CI u-95% CI eff.samp pMCMC
# (Intercept) 6.710  5.345  7.997 1000 0.001
# NAP -2.849 -4.019 -1.536 1000 0.001

MCMCglmm(y ~ x, random = z + x:2)
sunmary (NAPMod_Prior)$solutions _ . )
Implies that the intercept varies randomly by z and the slope of x
# post.mean 1-95% CI u-95% CI eff.samp pMCMC varies by z. Equivalent to (1+x | z)

# (Intercept) 6.696 5.355 7.863 1000 0.001
# NAP -2.884 -3.838 -1.917 1000 0.001
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Exercise: Off the MCMC Shorline

» Fit a model with a NAP*anglel interaction and random effect
of beach

> Evaluate the model and whether it is fit well

» Compare the coefficients to a model with a strong prior that
the interaction is -5.




