Observational Study Design

4□ > 4圖 > 4 臺 > 4 臺 > ■ のQで

Problem: What if An Observed Relationship Doesn't Make Sense?

4 D > 4 B > 4 B > 4 B > 9 Q (

Problem: What if An Observed Relationship Doesn't Make Sense

Covariates can Change Results

Simpson's Paradox

How will including k change B_{xy} ?

$$y = a + B_{xy}x + e$$

What do we Control For?

What do we Control For?

1) No node in our control set is a descendant of X.

Back-Door Criterion sensu Pearl

1) No node in our control set is a descendant of X.

2) Z blocks every path between X and Y that contains an arrow into X.

Back-Door Criterion sensu Pearl

How Do We Account for Covariates?

1. Include control variables, but be exercise care with interpretation

Z3 -> X Path is the covariance between them, accounted for in calculation of coefficients in multiple linear regression

How Do We Account for Covariates?

- 1. Include control variables, but be exercise care with interpretation
- 2. Take residuals of predictor with respect to relevant variables in control set

Residuals with respect to Z2 may be helpful

You Try...

ANOVA v. Regression for Experiments

Regression Design and ANOVA Design have the Same Model

- ightharpoonup Y = BX + e underlies both
- ▶ F-Test for both examines variation explained
- ▶ BUT Regression has fewer parameters to sample size

For Linear Relationships, More Power from Regression

◆□▶◆□▶◆重▶◆重▼ 90℃

A Simulation Approach to ANOVA and Regression Power

```
getY <- function(x) rnorm(length(x), x , 10)

#two approaches
x<-1:24
xAnova<-rep(seq(1,24,length.out=6),4)</pre>
```

A Simulation Approach to ANOVA and Regression Power

```
powFunc <- function(predictor, n.sims=500, a=F, fun=getY){
  pvec <- sapply(1:n.sims, function(i) {
    y <-fun(predictor)

    #run either a regression or categorical model
    if(a){
        alm <- lm(y~I(factor(predictor)))
    }else{
        alm <- lm(y~predictor)
    }

    #get p from an f test
    anova(alm)[1,5]
} )

#power
1 - sum(pvec > 0.05)/n.sims
}
```

Yes, Regression More Powerful

```
set.seed(100)
powFunc(x)

# [1] 0.914

powFunc(xAnova, a=T)

# [1] 0.712
```


What if the Relationship is Nonlinear

```
getYSat <- function(x) rnorm(length(x), -2/x, 0.7)
#
powFunc(x, fun=getYSat)
# [1] 0.39
powFunc(xAnova, a=T, fun=getYSat)
# [1] 0.918</pre>
```

Replicated Regression or Other Options

Nonlinear Least Squares an option, GLM if Hetereoskedasticity exists