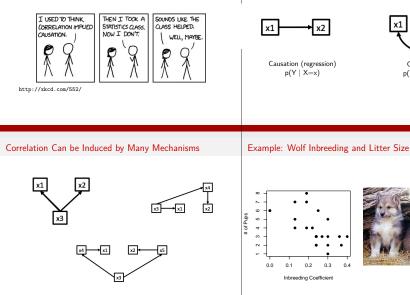
How are X and Y Related

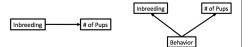
Correlation

p(Y=y, X=x)

Correlation and Regression



Example: Wolf Inbreeding and Litter Size

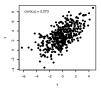


We don't know which is correct - or if another model is better. We can only examine $\ensuremath{\textit{correlation}}$.

Covariance

Describes the relationship between two variables. Not scaled.

 σ_{xy} = population level covariance, s_{xy} = covariance in your sample

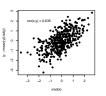


Pearson Correlation

Describes the relationship between two variables. Scaled between -1 and 1.

 ρ_{xy} = population level correlation, r_{xy} = correlation in your sample

$$\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$

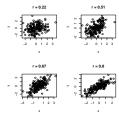


Assumptions of Pearson Correlation

- Observations are from a random sample
- Each observation is independent
- X and Y are from a Normal Distribution

The meaning of r

Y is perfectly predicted by X if r = -1 or 1.



Testing if $r \neq 0$

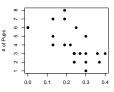
Ho is r=0. Ha is $r \neq 0$.

Testing:
$$t = \frac{r}{SE_{a}}$$
 with df=n-2

WHY n-2?

$$SE_r = \sqrt{\frac{1-r^2}{n-2}}$$

Example: Wolf Inbreeding and Litter Size



Inbreeding Coefficient

Example: Wolf Inbreeding and Litter Size

cov(wolves)

##		inbreeding.coefficient	pups
## inbreedin	g.coefficient	0.009922	-0.1136
## pups		-0.113569	3.5199

cor(wolves)

##		inbreeding.coefficient	pups
##	inbreeding.coefficient	1.0000	-0.6077
##	pups	-0.6077	1.0000

with(wolves, cor.test(pups, inbreeding.coefficient)) Load up the pufferfish mimic data ## from W&S ## Pearson's product-moment correlation Plot the data ## ## data: pups and inbreeding.coefficient Assess the correlation and ## t = -3.589, df = 22, p-value = 0.001633 covariance ## alternative hypothesis: true correlation is not equal to 0 Assess Ho ## 95 percent confidence interval: ## -0.8120 -0.2707 Challenge - Evaluate Ha1: the ## sample estimates: correlation is 1 cor ## ## -0.6077 Exercise: Pufferfish Mimics & Predator Approaches Violating Assumptions? # get the correlation and se puff cor = cor(puffer)[1, 2]se puff cor = sort((1 - puff cor)/(nrow(puffer) - 2)) Spearman's Correlation (rank based) # t-test with difference from 1 Distance Based Correlation & Covariance (dcor) t puff <- (puff cor - 1)/se puff cor Maximum Information Coefficient t_puff (nonparametric) ## [1] -2.005

Exercise: Pufferfish Mimics & Predator Approaches

All are lower in power for linear correlations

1 tailed, as > 1 is not possible
pt(t_puff, nrow(puffer) - 2)

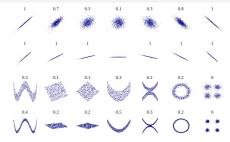
Example: Wolf Inbreeding and Litter Size

[1] 0.03013

Spearman Correlation

- 1. Transform variables to ranks, i.e.,2,3... (rank())
- 2. Compute correlation using ranks as data
- 3. If $n \leq 100$, use Spearman Rank Correlation table
- 4. If n > 100, use t-test as in Pearson correlation

Distance Based Correlation, MIC, etc.



How are X and Y Related

$\begin{array}{l} \text{Least Squares Regression}\\ y = ax + b \end{array}$

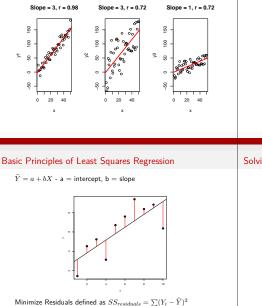
Then it's code in the data, give the keyboard a punch Then cross-correlate and break for some lunch Correlate, tabulate, process and screen Program, printout, regress to the mean -White Coller Holler by Nigel Russell

Causation (regression) $p(Y \mid X=x)$

Correlation p(Y=y, X=x)

Correlation v. Regression Coefficients

٢



Basic Princples of Linear Regression

- > Y is determined by X: p(Y | X=x)
- The relationship between X and Y is Linear
- The residuals of Y = a + bx are normall distributed (i.e., Y = a + bX + e where $N(0,\sigma)$)

Solving for Slope

$$b = \frac{s_{xy}}{s_x^2} = \frac{cov(x,y)}{var(x)}$$

$$= r_{xy} \frac{s_y}{s_x}$$

Solving for Intercept

Least squares regression line always goes through the mean of ${\sf X}$ and ${\sf Y}$

$$\bar{Y} = a + b\bar{X}$$

$$\mathsf{a} = \bar{Y} - b\bar{X}$$

Fitting a Linear Model in R

wolf_lm <- lm(pups ~ inbreeding.coefficient, data=wolves)</pre>

5	1	f	_	1	m		

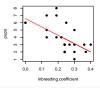
W

##	
##	Call:
##	<pre>lm(formula = pups ~ inbreeding.coefficient, data = wolves)</pre>
##	
##	Coefficients:
##	(Intercept) inbreeding.coefficient
##	6.57 -11.45

Extracting Coefficients from a LM	Extracting Fitted Values from a LM
<pre>coef(wolf_lm) ## (Intercept) inbreeding.coefficient ## 6.567 -11.447 coef(wolf_lm)[1] ## (Intercept) ## 6.567</pre>	<pre>fitted(wolf_lm) ## 1 2 3 4 5 6 7 8 9 10 ## 6.667 6.567 5.079 5.079 4.392 4.392 4.392 3.706 3.820 ## 11 12 13 14 15 16 17 18 19 20 ## 3.820 3.820 3.820 3.820 3.820 3.477 3.133 3.133 3.133 ## 21 22 23 24 ## 2.446 1.989 2.332 4.049 coef(wolf_lm)[1] + coef(wolf_lm)[2]*0.25 ## (Intercept)</pre>
	## 3.706

Plotting Fitted LMs

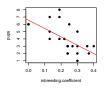
plot(pups ~ inbreeding.coefficient, data=wolves, pch=19)



Plotting Fitted LMs

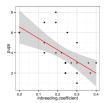
plot(pups ~ inbreeding.coefficient, data=wolves, pch=19)

abline(wolf_lm, col="red", lwd=2)



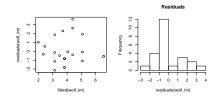
Ggplot2 and LMs

ggplot(data=wolves, aes(y=pups, x=inbreeding.coefficient)) +
geom_point() +
theme_bw() +
stat_smooth(method="in", color="red")



Checking Residuals

par(mfrow=c(1,2))
plot(fitted(wolf_lm), residuals(wolf_lm))
#
hist(residuals(wolf_lm), main="Residuals")



Exercise: Pufferfish Mimics & Predator Approaches

- Fit the pufferfish data
- Visualize the linear fit
- Examine whether there is any relationship between fitted values, residual values, and treatment

