Functions in Action for Probability!

Is a mean different from 0?

Recall last week that we calculated p-values assuming we knew a population's standard deviation.

Often we want to know if a sample mean is different from 0 . We know that an estimated mean from a large sample size is normally distributed, so...

Enter the Z-Test

$$
Z=\frac{\bar{Y}-\mu}{\sigma_{\bar{Y}}}
$$

The Z-score compares a sample mean to an assumed population mean.

We call it a Z-Score because we correct by the standard error of the mean to compare to a standard deviation of the sample mean (SE).

Standard Normal (Z) Distribution

Z-score $=\frac{Y_{i}-\bar{Y}}{\sigma}$

Z-Test

Does Z fall into these tails?

A Simple $P(z)$ Function

```
pz <- function(sample, mu = 0) {
    z <- (mean(sample) - mu)/(sd(sample)/sqrt(length(sample)))
    return(2 * pnorm(abs(z), lower.tail = F))
}
```

set.seed (697)
pz(rnorm(5000))
\#\# [1] 0.6087
$\mathrm{pz}(\operatorname{rnorm}(5$, mean $=1))$
\#\# [1] 0.0703
pz(rnorm(5000))
\#\# [1] 0.6087
$\mathrm{pz}(\operatorname{rnorm}(5$, mean $=1))$
\#\# [1] 0.0703

Sample's Aren't Normal: Student's T

$\frac{17 \sin ^{2 \pi /(I)}}{59}$

DF = Degrees of Freedom
= Sample Size - \# of Estiamted Parameters
For t , this is $\mathrm{n}-1$

Sample's Aren't Normal: Student's T

Exercise: Gimme a T (function)

Write a oneSampleT function. To make it more readable, write a SE function, too.
Challenge: make it return a list with additional information of your choice.

Exercise: Gimme a T (function)

```
samp <- rnorm(50, 1)
t.test(samp)
##
## One Sample t-test
##
## data: samp
## t = 9.405, df = 49, p-value = 1.48e-12
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.9509 1.4676
## sample estimates:
## mean of x
## 1.209
oneSampleT(samp)
## [1] 1.48e-12
```


Consider the χ^{2}

If the difference between an observation and it's expectation follows a Z-Distribution, the square should follow a chi-square distribution!

Think of a normal distribution squared yielding a χ^{2} distribution defined by degrees of freetom $=n-1$

$$
\chi^{2}=\frac{\sum(O-E)^{2}}{E}
$$

Consider the χ^{2}

Assumptions of the χ^{2}

1. No expected values less that 1
2. 80% of the expected values must be >5

What happens if I violate the assumptions? Combine categories or use a different test.

Example of the χ^{2}

The number of tomato plants that failed due to disease in a farm should follow a negative binomial distribution in any given year with 2 plants dying and an overdispersion parameter of 5 . Famer Dale seeded tomato plants in 100 different plots. Looking across his field, he finds the following pattern of mortality.
0 plants died: 9 plots
1 plants died: 23 plots
2 plants died: 22 plots
3 plants died: 18 plots
4 plants died: 19 plots
>4 plants died: 9 plots
Was this an anomolously bad year?

What are our Expectations?

Negative Binomial with a μ of 2 and dispersion parameter of 5 .

Example of the χ^{2}

```
100*dnbinom(0:4, mu=2, size=5)
## [1] 18.593 26.562 22.767 15.178 8.673
100*(1 - sum(dnbinom(0:4, mu=2, size=5)))
## [1] 8.225
```

0 plants died: 9 plots, 18.59 expected
1 plants died: 23 plots, 26,56 expected
2 plants died: 22 plots, 22.77 expected
3 plants died: 18 plots, 15.17 expected
4 plants died: 19 plots, 8.67 expected
>4 plants died: 9 plots, 8.23 expected

Example of the χ^{2}

```
observed <- c(9,23,22,18,19,9)
expected<- c(100*dnbinom(0:4, mu=2, size=5),
    100*(1-sum(dnbinom(0:4, mu=2, size=5))))
chisq<-sum((observed-expected) ^2/expected)
chisq
## [1] 18.35
pchisq(chisq, df=6-1, lower.tail=FALSE)
## [1] 0.002543
```

What if we ONLY new the distribution and dispersion parameter?

