
Homework 5

Biology 697

10/5/2012

1 χ2 - the function!

1.1

Write a simple function to calculate a chi-squre test based on the assumption
that you should have the same observed values across all categories. Have
it return the value of χ2, the degrees of freedom, and the p-value. To test it,
compare your function’s output for the observed vector 1:10 versus R’s chisq.test
function.

chiFun<-function(obs){
exp <- rep(sum(obs)/length(obs), length(obs))

chisq <- sum((obs-exp)^2/exp)

p <- pchisq(chisq, df=length(obs)-1, lower.tail=FALSE)

return(list(Chisq = chisq, DF = length(obs)-1, p=p))

}

chiFun(1:10)

$Chisq

[1] 15

##

$DF

[1] 9

##

$p

[1] 0.09094

chisq.test(1:10)

##

Chi-squared test for given probabilities

##

1

data: 1:10

X-squared = 15, df = 9, p-value = 0.09094

1.2

Use your function to answer question 13 on page 201 of W&S. Answer all parts
of the question (some will not require R - sad, I know.)

windowVec <- c(30, 15, 8)

chiFun(windowVec)

$Chisq

[1] 14.3

##

$DF

[1] 2

##

$p

[1] 0.0007841

2 Contingency Tables

In W&S 9.3, we are introduces to the χ2 contingency test which seeks to evaluate
association between categorical variables - such as whether a fish is infected or
uninfected with a parasite v. whether or not it is eaten by birds. Using the
formulae in your book write a function that will return the χ2, DF, and p-value
for a contingency table. Use the following matrix as test data (from the book)
as well as the output from R’s own chisq.test. Show me that your function
works.

#we specify a matrix by giving it a vector, then

#specifying how the rows and columns are setup

eaten <- matrix(c(1, 10, 37,

49, 35, 9), ncol=3, byrow=T)

#now gives names to the rows and columns

colnames(eaten) <- c("Uninfected", "Infected", "Highly Infected")

rownames(eaten) <- c("Eaten", "Not Eaten")

eaten

Uninfected Infected Highly Infected

Eaten 1 10 37

Not Eaten 49 35 9

2

chisq.test(eaten)

##

Pearson's Chi-squared test

##

data: eaten

X-squared = 69.76, df = 2, p-value = 7.124e-16

Some helpful functions for you - nrow, ncol, rowSums, colSums. Also,
read the whole section before writing this. In writing the function, one thing
that might help would be to write out what you’re going to do, step by step, in
comments. Each comment should be one step. Then fill in the function with
code that impelemnts what you have written in each comment. Heck, ponder
adopting this as your standard workflow. It will save you a lot of time.

chiTableTest <- function(aMatrix){
#degrees of freedom = (r-1)(c-1)

df <- (nrow(aMatrix)-1) * (ncol(aMatrix)-1)

#get the row, col, and total sums for later use

rs <- rowSums(aMatrix)

cs <- colSums(aMatrix)

total <- sum(aMatrix)

#now iterate over the entire matrix and get the (O-E)^2/E value for each cell

#using the shortcut for calculating expected frequencies

chisq<-0

for(i in 1:nrow(aMatrix)){
for(j in 1:ncol(aMatrix)){
obs <- aMatrix[i,j]

exp <- rs[i] * cs[j]/total

chisq <- chisq + (obs-exp)^2/exp

}
}

return(list(chisq = chisq, df = df, p = pchisq(chisq, df, lower.tail=F)))

}

chiTableTest(eaten)

$chisq

Eaten

69.76

##

3

$df

[1] 2

##

$p

Eaten

7.124e-16

2.1

Show me that your function works by answering question 21 on page 230 of
W&S. Note, the default behavior of R’s chisq.test on the same data set is to
invoke Yates’ continuity correction. So, careful when checking yourself.

heart <- matrix (c(229, 1534,

822, 18296), ncol=2, byrow=T)

rownames(heart) <- c("Without Pain", "With Pain")

colnames(heart) <- c("Died", "Lived")

chiTableTest(heart)

$chisq

Without Pain

255

##

$df

[1] 1

##

$p

Without Pain

2.123e-57

3 Student’s T and Power

Have a Guiness. There are some exact formulae to calculate the power of a t-
test. Let’s see how they compare to a simulation based approach. Let’s compare
the power via simulation for a sample with a sammple size of 10, a mean of 2,
and a standard deviation of 3 to the one calculated by conventional means. In
R, to do this conventionally, we’d use the following for a 2-tailed one sample
T-test.

power.t.test(n=10, delta=2, sd=3,

alternative="two.sided", type="one.sample")

4

##

One-sample t test power calculation

##

n = 10

delta = 2

sd = 3

sig.level = 0.05

power = 0.4692

alternative = two.sided

How about simulation? Let’s put it together using functions.

3.1 T-Test!

To start with, let’s write a function for the calculation of p-values for our data
and evaluate it. Write a function to conduct a one sample t-test. Run it against
sample of 10 values drawn from from a normal distribution with mean 2 and sd
of 3. Check the results against R’s t.test and show me that both agree.

se <- function(sample) sd(sample)/sqrt(length(sample))

tTest <- function(sample, nullMu=0){
n<-length(sample)

pt(abs((mean(sample)-nullMu)/se(sample)), df=n-1, lower.tail=F) * 2

}

samp<-rnorm(10,2,3)

tTest(samp)

[1] 0.2928

t.test(samp)

##

One Sample t-test

##

data: samp

t = 1.117, df = 9, p-value = 0.2928

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-1.672 4.934

sample estimates:

mean of x

1.631

5

3.2 In which we begin simulations

Now we need to get the power of our t-test via simulation. We’ll accomplish
this in two steps. First, write a function that will give you a vector of p values
from t-tests on simulated data. This function should accept the number of
simulations, the sample size, an critical effect size (the delta from above), and a
sample standard deviation as it’s arguments at the very least. Use it to create
a vector of 5000 simulated p values using a sample size of 10, an effect size of
2, and a sd of 3, as above.

pvecGen <- function(n.sims=5000, n, ybar=0, sd=1, nullMu=0){
pv <- rep(NA, n.sims)

for(i in 1:n.sims){
samp<-rnorm(n, mean = ybar, sd=sd)

pv[i] <- tTest(samp)

}

pv

}

set.seed(081178)

pVector<-pvecGen(n=10, ybar=2, sd=3)

3.3 Simulated Power!

Now that you have a vector of simulated p-values, write a function that will
take such a vector, and calculate it’s power given an alpha. What is the power
of your test, given an alpha of 0.05? How does it compare to the power from
the exact calculation above?

power <-function (p, alpha=0.05) 1-sum(p > alpha)/length(p)

power(pVector)

[1] 0.468

6

	2 - the function!
	
	

	Contingency Tables
	

	Student's T and Power
	T-Test!
	In which we begin simulations
	Simulated Power!

