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Summary

1. Natural scientists and especially ecologists use manipulative experiments or field observations along gradients

to differentiate patterns driven by processes from those caused by random noise. A well-conceived sampling

design is essential for identifying, analysing and reporting underlying patterns in a statistically solid and repro-

ducible manner, given the normal restrictions in labour, time and money. However, a technical guideline about

an adequate sampling design to maximize prediction success under restricted resources is lacking. This study

aims at developing such a solid and reproducible guideline for sampling along gradients in all fields of ecology

and science in general.

2. We conducted simulations with artificial data for five common response types known in ecology, each repre-

sented by a simple function (no response, linear, exponential, symmetric unimodal and asymmetric unimodal).

In the simulations, we accounted for different levels of random and systematic error, the two sources of noise in

ecological data. We quantified prediction success for varying total sample size, number of locations sampled

along a spatial/temporal gradient and number of replicates per sampled location.

3. The number of replicates becomes more important with increasing random error, whereas replicates become

less relevant for a systematic error bigger than 20% of total variation. Thus, if high levels of systematic error

are indicated or expected (e.g. in field studies with spatial autocorrelation, unaccountable additional environ-

mental drivers or population clustering), continuous sampling with little to no replication is recommended. In

contrast, sampling designs with replications are recommended in studies that can control for systematic errors.

In a setting that is characteristic for ecological experiments and field studies strictly controlling for undeter-

minable systematic error (random error ≥10% and systematic error ≤10% of total variation), prediction success

was best for an intermediate number of sampled locations along the gradient (10–15) and a low number of

replicates per location (3).

4. Our findings from reproducible, statistical simulations will help design appropriate and efficient sampling

approaches and avoid erroneous conclusions based on studies with flawed sampling design, which is currently

one of themain targets of public criticism against science.

Key-words: ANOVA, curve fitting, ecological experiment, experimental design, model selection, re-

gression analysis, replication, sampling design, simulation

Introduction

Temporal and spatial gradients are an intriguing and common

feature in nature as already realized by the Greek philosopher

Heraclites in 500 B.C. and expressed by Plato as ‘panta rhei’

(everything flows) (Diels 1895). Major advances in the under-

standing of our current world have been made through analys-

ing gradients. This is true for all disciplines of science but

especially for ecology where, for decades, scientists have dealt

with biotic responses along environmental gradients (Ramenskij

1918; Gleason 1939; Curtis &McIntosh 1951;Whittaker 1967;

Palmer&White 1994; Sanders &Rahbek 2012).

Numerous concepts in ecology are based on continuous

changes of biotic features along abiotic environmental gradi-

ents such as the niche concept (Grinnell 1917), coenoclines

(Gauch & Whittaker 1972), the intermediate disturbance

hypothesis (Connell 1978) or the stress-gradient hypothesis

(Bertness & Callaway 1994). Efforts were made in the last dec-

ades to develop and test analytical techniques for characteriz-

ing single species and whole community responses along

environmental gradients in a sound and reproducible manner.*Correspondence author: E-mail: andreas.schweiger@uni-bayreuth.de
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These analytical approaches include the establishment of simi-

larity indices (e.g. Bray & Curtis 1957), univariate regression

and multivariate ordination methods (Whittaker 1967; ter

Braak & Prentice 1988) as well as the methodological concepts

of beta-diversity (Whittaker 1972) and species response curves

(Austin 1987; Huisman, Olff & Fresco 1993). Numerous stud-

ies exist on how to distribute samples through space and time

to optimal cover the underlying ecosystem’s variability (e.g.

Gillison 1984; Legendre et al. 1989; Stein & Ettema 2003).

Important methodological concepts like the response surface

methodology (Box & Wilson 1951) evolved from the need to

increase the prediction success of gradient patterns in natural

science (Myers, Khuri &Carter 1989).

Based on the gathered knowledge from all this original

research, numerous text books give recommendations about

how to plan and conduct ecological sampling and how to anal-

yse the sampled data in order to approximate the underlying

pattern as close as possible (e.g. Cochran & Cox 1957;

Gregoire & Valentine 2007; Lohr 2009; Gotelli & Ellison

2013). However, a clear guideline about howmany samples are

needed in which intensity along a gradient under study tomost

efficiently and accurately identify ecological patterns along the

studied gradient is still missing.

Several authors already provide technical assistance to

improve sampling with the aim to increase the reliability of

results obtained from the sampled data. Adequate total sam-

ple size can be estimated using pre-studies (Eckblad 1991)

and/or a priori power tests (Bartlett, Kotrlik & Higgins

2001; Ioannidis 2005; Bakker, van Dijk & Wicherts 2012).

By contrast, for estimating the number of necessary repli-

cates, only approximations based on empirical observations,

such as the ‘rule of ten’ by Gotelli & Ellison (2013), are

available. This rule of thumb suggests a minimum number

of ten observations per sampling point. However, the

authors themselves note that ‘[. . .] the rule of ten is not based

on any theoretical principle of experimental design or statisti-

cal analysis, but is a reflection of our hard-won field experi-

ence with designs that have been successful and those that

have not’. Even less is known when it comes to balancing

the number of replications per point of observation against

the number of observation points along a spatial or tempo-

ral gradient of interest although this is a major source of

error in designing ecological studies (Hurlbert 1984; Quinn

& Keough 2002). Based on this lack of information, there

are calls for a clear, empirically based guideline about how

to optimize ecological sampling (e.g. Bartlett, Kotrlik &

Higgins 2001) in order to conduct cost-efficient but still sta-

tistically sound analyses. This is especially important as sam-

pling is cost-, time- and/or labour-intensive and, thus,

strongly restricted by limited funding which is characteristic

for almost every scientific study.

The two main characteristics in sampling design are total

sample size and the number of replicates per sampling point

along the gradient under study (Gotelli & Ellison 2013). The

necessity to take an adequate total number of samples results

from the fact that the reliability of findings depends on the total

sample size in relation to the random variation that can mask

the focal pattern (Eckblad 1991; Bartlett, Kotrlik & Higgins

2001). The replication of observations at each sampled loca-

tion along a spatial/temporal gradient of a certain environmen-

tal factor (e.g. spatial or temporal variation of temperature,

pH; hereafter called predictor level) follows two aims: (i) to

increase the accuracy of parameter estimation and (ii) to pro-

vide information on the natural variation within the data set

on which the statistical tests for differences between the predic-

tor levels are applied (Southwood & Henderson 2000; Quinn

& Keough 2002). It is obvious that the higher the total sample

size and the higher the number of observations per predictor

level (n; replicates; for sake of linguistic simplicity, we use repli-

cates for n despite sometimes in the literature it is also applied

to n – 1), the more precisely one can estimate the underlying

pattern. If the number of total observations is constant, there is

an inevitable trade-off between the number of observations

which can be sampled per predictor level and number of sam-

pled predictor levels along the gradient of interest. Up to now

there has been no technical guidance about how to balance the

number of predictor levels and the number of replicates when

aiming for maximum prediction success under limited resource

(i.e. total sample size).

For the study of a response variable along a gradient of a

certain predictor, practically any solution ranging from only

two predictor levels with many replicates to many predictor

levels with no replication can be found in the recent litera-

ture (Scheiner & Gurevitch 2001; Quinn & Keough 2002;

Gotelli & Ellison 2013). Ecologists are usually interested in

differences of biotic response under certain environmental

settings (traditionally experimental ecologists) or study the

actual shape of a biotic response along the gradient of a cer-

tain environmental factor (field- and macro-ecologists).

Based on these two different ways of studying ecological

response to environmental changes, two major methodologi-

cal approaches are common in current ecological research.

Field- and macro-ecologists tend to sample gradients contin-

uously (in a systematic or preferential manner) but without

replication (‘regression approach’: Mac Nally 2000; Quinn

& Keough 2002). In contrast, experimental ecologists tradi-

tionally use replicated sampling of two to few predefined

predictor levels (‘ANOVA approach’: Cottingham, Lennon &

Brown 2005; Beier et al. 2012). However, also in experimen-

tal ecology, recently a call for ‘regression-based experimental

design’ has been launched that comes along with reduced

replicates but higher numbers of predictor levels (Cotting-

ham, Lennon & Brown 2005; Beier et al. 2012; de Boeck

et al. 2015). However, no feasible methodological recom-

mendation exists for this way of conducting ecological

experiments so far.

Under natural, non-experimentally controlled conditions

biological systems are characterized by high random variation,

which will likely dilute the underlying relationships of interest

(Quinn & Keough 2002; Lohr 2009). Furthermore, data from

field investigations can be affected by a complex interplay of

various interacting or opposing gradients. Such factors can be

seen as systematic errors in the biological response along a gra-

dient under study and can hamper the study of responses to

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 7, 463–471
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one specific environmental gradient (Gauch & Whittaker

1972; Richardson et al. 2012; Steinbauer et al. 2012). Thus,

measurements in natural systems are always subject to errors

and uncertainties related to measurement errors, ecological

and environmental stochasticity and unaccounted, additional

influencing factors (Taylor1991; Clark 2003; Richardson et al.

2012).

Using artificial data instead of ‘real-world’ data allows

excluding or adding known random variation and systematic

errors to the ‘observational’ data. In this paper we use simula-

tions based on artificial data with known properties in terms of

random and systematic noise to address the problem of how to

balance the number of predictor levels sampled along a gradi-

ent of a certain environmental factor and number of replicates

per predictor level in order to maximize prediction success of

the underlying ‘true’ pattern. By varying random as well as sys-

tematic noise in the data, we provide a statistically sound and

reproducible guideline about how to optimally sample ecologi-

cal data, which is applicable in all fields of ecology and science

in general.

In our simulations, we assume that a ‘true’ relationship

between gradual changes of an environmental factor and the

ecological responses thereon follows a defined response shape

that corresponds to a common mathematical relationship. We

add random and/or systematic errors of different degrees to

the data set, which can mask the ‘true’ relationship. Then, we

draw samples from the simulated gradients by using different

sampling approaches and compare the results to the underly-

ing, ‘true’ pattern.

Materials andmethods

MODEL SELECTION AND ARTIF IC IAL DATA

CONSTRUCTION

We simulated five response shapes frequently occurring in ecological

studies (no response as a null model/control, linear response, exponen-

tial decay, unimodal response with centred maximum and unimodal

response with non-centred maximum) based on simple linear models

(see Table 1; inlets in Appendix S1). The response variable (y) thereby

represents any kind of biotic response (e.g. species richness, photosyn-

thetic rate, biomass, phylogenetic diversity) that varies along a gradient

of the predictor variable (x), which, in turn, represents any kind of spa-

tial or temporal change of environmental conditions (e.g. spatial/tem-

poral change of temperature, pH, disturbance intensity). To make our

inferences easily transferable to any response and predictor variable

independent of the studied system, we scaled our parameters in arbi-

trary units (predictor variable from 0 to 1000, response variable from 0

to 1).

Data sampled from natural systems always include errors and uncer-

tainty (Taylor 1991). Traditionally, two types of error can be classified

depending on their way of affecting the sampled data and, thus, the sta-

tistical inference drawn from it (Richardson et al. 2012). Whereas the

so-called random error combines non-directional noise which influ-

ences the response variable in addition to the main predictor in a

stochastic and, thus, unpredictable way (observed value = expected

value + randomnoise; Fig. 1a), ‘systematic error’ summarizes a bias in

the data which is constant but unknown (Abernethy, Benedict &Dow-

dell 1985). This systematic error may originate, for example from spa-

tially clustered environmental characteristics, population effects or any

other non-accounted or non-accountable influential factor (observed

Table 1. Response shapes considered in the comparison and functions

used for their implementation as well as parameterization in the simula-

tions

Response

shape Function a b c

# of

parameters

No response y = c 0�5 1

Linear y = ax + c �0�001 1 2

Exponential

decay

y = exp (�xa) 0�3 1

Unimodal

centred

y = ax2 + bx �4�10�6 4�10�3 2

Unimodal

non-centred

y = ax2 + c �1�10�6 1 2

0 1000

0

1

Gradient

0

1

1000

0

1000

0

G
ra

di
en

t
G

ra
di

en
t 0

1

Gradient  +  Random + Systematic = Combined(a)

(b)

Fig. 1. Artificial data for (a) only random

error or (b) random and systematic error. The

observed value was combined from the sum of

(i) an expected value froma gradient, (ii) a ran-

dom error (here 10% of gradient length) and

(iii) a systematic error (here 20% of gradient

length). The eight grid cells per considered pre-

dictor level along the gradient (l = 24) repre-

sent eight samples (n = 8) considered for each

predictor level. In the right panel, the grey

trend line indicates the gradient (expected

value without errors) and ‘+’ expected values

without random error (gradient and system-

atic error). The points represent the samples

drawn at each predictor level along the gradi-

ent (equal grid cells of ‘Combined’).

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 7, 463–471
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value = expected value + random noise + systematic influence;

Fig. 1b).

In order to reflect different levels of random variation in the

simulated data, we assumed that the observed values of the

response variable are scattered around the expectancy value of a

certain predictor level with a normal distribution that corresponds

to a standard deviation (sd) of 0�02, 0�05, 0�1, 0�15, 0�2 and 0�25
units, that is 2% to 25% of the total variation. Information about

the levels of random noise in ‘real-world’ data is extremely rare,

and only very few studies explicitly focus on the quantification of

random noise in ecological data. Based on sampling designs to

explicitly quantify random noise in eddy flux measurements, a

highly uncertain method in environmental science, Richardson

et al. (2012) estimated random noise to reach a maximum of

23% of total variation. Similar levels of random noise were quan-

tified by Kelly et al. (2009) for an ecological quality index for riv-

ers based on the community composition of diatoms where

random noise varied between 3 and 22% of total variation (on

average 11�3 � 4�6%). As the levels of random noise observed in

both studies are completely covered in our simulations, we

believe that our simulations will be of practical use in many ‘real-

world’ situations.

In addition to the non-directional effect of the random error, we

added different levels of systematic error to account for factors, which

are not yet covered in the actual study but have a directional effect on

the observed response pattern. This systematic bias added to the data

can be considered as a ‘fully systematic error’ (c.f. Richardson et al.

2012) as it influences all drawn samples to the same degree. To imple-

ment this additional, structured noise in our data, we randomly shifted

the ‘true’ expectancy value yi independently at each predictor level xi
sampled along the gradient by 0% to 25%of total variation (sd.err = 0,

0�02, 0�05, 0�1, 0�15, 0�2 and 0�25 units, respectively). Thus, the extent

by which a certain level of systematic error shifted the ‘true’ expectancy

values yi at a certain predictor level xi was similar for all simulations but

differed in the direction (whether yi was over- or underestimated) for

the different simulation settings (e.g. different response shapes, levels of

random variation). Afterwards, we added different levels of random

error in addition to the systematic error by sampling normally dis-

tributed around the new, shifted expectancy values (again random vari-

ation sd of 0�02, 0�05, 0�1, 0�15, 0�2 and 0�25 units, respectively,

Fig. 1b).

We considered 31 different values for total number of observations

(N) with a minimum sample size of 6 followed by a stepwise

increase of total samples size from 10 to 300 in steps of 10 (i.e.

N = 6, 10, 20, . . ., 300). In combination with the six different levels

of random and seven levels of systematic errors, respectively, we

tested a total of 1302 combinations of study settings. In agreement

with common recommendations in ecological literature about gradi-

ent analysis in ecology (e.g. Kenkel, Juh�asz-Nagy & Podani 1989;

Quinn & Keough 2002), we placed the sampled predictor levels

evenly (equidistantly) along the gradient of 0–1000, with the two

end points always being sampled. The number of predictor levels (l)

ranged from 2 to the total number of observations (N). The number

of observations per predictor level (n) varied from one observation

(no replication) per predictor level (n = 1) to 50% of total number

of observations (n = N/2). For each value of N, all whole-number

factorizations N = n � l were considered. For example, if the total

number of observations was N = 6, we compared three different

sampling strategies: 6 predictor levels with 1 observation per level, 3

predictor levels with 2 replicates per level and 2 predictor levels with

3 replicates per level.

EFFECT OF SAMPLING APPROACH ON CORRECT

PATTERN IDENTIF ICATION

The data set for each parameter combination (response shape 9 level

of random variation 9 level of systematic error 9 total number of

observations 9 number of observations per predictor level) was

subjected to a simple linear, one-factorial regression analysis between a

response variable y (e.g. species richness) and a predictor variable x

(e.g. spatial/temporal change of temperature) with the five response

shapes (transformations of the predictor x) of Table 1 to choose from

by using the lm() command in R (v. 3.0.1, R Development Core Team

2013). Replications sampled for the particular predictor levels were

thereby treated as independent observations. The most appropriate

model among the five options was then selected based on AICc, which

takes model complexity and total sample size into account (Burnham

&Anderson 2002). For each parameter combination, we repeated sam-

pling and the subsequent analyses 1000 times.

In a next step, the statistically inferred response shape was compared

to the ‘true’ response shape in twoways. In the correct model approach,

we calculated the fraction of correctly detected response shapes (irre-

spective of the model parameters). We therefore defined a pattern to be

correctly predicted, when the response shape chosen from the algo-

rithm based on AICc was the same as the predefined, ‘true’ response

shape.We calculated the fraction of correctly predicted response shapes

for each combination ofN, l (n), sd and sd.err from 1000model runs.

The precision of prediction approach quantified how much the

inferred response shape deviated from the actual response shape (irre-

spective of the function type). For this second approach, we calculated

the absolute deviation of the predicted response shape from the ‘true’

response shape by using a numerical integration approach. Therefore,

we summed up the mean absolute differences between the predicted

and true response value ðjŷi � yijÞ for a defined number of predictor

levels along the gradient under study with xi = 0, 10, 20, . . ., 1000 and

divided this sum by the number of considered predictor values (101).

As a result, the area enclosed between the ‘true’ and the predicted

response shape along the whole gradient under study standardized by

the number of sampled locations along this gradient is calculated. The

derived values were then divided by the maximum deviation between

inferred and true response pattern, which could be observed among all

five response shapes for the respective level of random variation. The

complement of these standardized values (i.e. 1 – value) increases with

increasing precision towards 1 andwas defined as precision of prediction

(POP).

Besides the type II error (chance of failing to detect a present pattern)

which is captured by these first two approaches, we also captured the

type I error problematic (chance of detecting a non-existent pattern) in

a third approach. Using the no-response pattern as a basis, we calcu-

lated the fraction of cases where patterns were erroneously detected

from 1000model runs for each combination ofN, l (n), sd and sd.err.

To visualize the simulation results, we plotted the fraction of cor-

rectly detected response shapes and the POP values for each of the five

response shapes as well as a mean of these (excluding the no-response

pattern) as a function of the total number of observations, the number

of predictor levels and the number of replicates. Trend surfaces for the

visualizations were fitted by using least-squares based on a third-order

polynomial (surf.ls() and trmat() commands of the spatial package in R,

v. 7.3-7; Venables & Ripley 2002) as well as isolines (contour() com-

mand implemented in R). The same was done for the fraction of erro-

neously detected pattern detection based on the no-response pattern.

All simulations and calculations were conducted in R with the

add-on packages CATOOLS (v. 1.14, Tuszynski 2012) and AICCMODAVG

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 7, 463–471
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(v. 1.35, Mazerolle 2013). In order to handle the large computational

capacity required to calculate the simulations, the MULTICORE package

(v. 0.1-7, Urbanek 2011) was used to run parallel computations of sim-

ulations on amultiple core server with a Linux operating system. Statis-

tical relationships were tested with Pearson correlation analyses as well

as simple linear models with a level of significance of alpha = 0�05.
Visualization was supported by the R packages FIELDS (v. 7.1., Nychka,

Furrer & Sain 2014) and CLASSINT (v. 0.1-21., Bivand 2013). The scripts

we implemented in R for simulation can be found in the electronic

appendix.

Results

The prediction success, expressed as the probability to detect

the correct response shape (correct model approach) and the

precision of this prediction (POP), was strongly related to the

number of predictor levels l and the number of replicates per

predictor level n (see Fig. 2 as well as Appendix S1). We

observed a strong increase in the prediction success from 2 to

about 10 predictor levels, almost independent of the total num-

ber of observations and the level of random variation. Except

for a very low total number of observations belowN = 10 and

the no-response pattern, this was true for all levels of random

variation (sd) and all tested response shapes in both

approaches (Appendix S1 and S2).

The correct model was detected in more than 90% of cases

for all parameter combinations and response shapes within a

range of l from about 10–30 (for exact values, see

Appendix S2a, c, e and S3). We observed this optimal range

of number of predictor levels for all levels of random varia-

tion (sd). The same range of l was also true for the precision

of prediction approach, in which the POP values reach the

maximum of 1 (Appendix S2b, d, f). With further increase of

l, concomitant with decreasing n, however, the probability of

correct prediction decreased again. Thus, an intermediate

number of predictor levels of l = 10–15 turned out to be

optimal, regardless of the total number of observations and

level of random variation along the sampled gradient. This

optimal, intermediate number of predictor levels holds true

for low to intermediate levels of systematic errors below

15% of total variation. For a systematic error ≥15%, the

adverse effects of a higher number of predictor levels disap-

peared. For high levels of systematic error, prediction success

reached its maximum at l ≥ 10 and stayed constant with

increasing l, although overall prediction success was lower

for higher levels than for lower levels of systematic error

(Fig. 2).

Besides the number of predictor levels, also the number of

replicates per predictor level n strongly affected the prediction

success. Although the overall prediction success decreased

with increasing levels of random variation, the need to take

replicates in order to maximize prediction success significantly

increased with increasing levels of random variation. While

# observations per predictor level (–)

To
ta

l #
 o

f o
bs

er
va

tio
ns

 (–
)

sd
.e
rr

 =
 0

sd
.e
rr

 =
 0

·0
5

sd
.e
rr

 =
 0

·1
sd
.e
rr

 =
 0

·2

sd = 0·02 sd = 0·1 sd = 0·2

0·75

0·80

0·85

0·90

0·95

1·0
POP

# of predictor levels (–)

Fig. 2. Prediction success depicted as the

precision of prediction (POP) for three different

levels of random variation (sd = 2%, 10%

and 20% of total variation) and four different

levels of systematic error (sd.err = 0%, 5%,

10% and 20% of total variation) based on an

average of the tested response patterns (with-

out no-response). POP values dependent on

the total number of observations, number of

predictor levels and number of observations

per predictor level are depicted. Solid lines

show isolines for a selection of POP values,

and dashed lines show isolines for a selection

of number of observations per predictor level.
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no replication was needed to reach the highest possible predic-

tion success for low levels of random variation (sd = 0�02 and

0�05), it was indispensable at higher levels of random varia-

tion (sd ≥ 0�1, see Appendix S1). Our simulations show that

on average n = 3 observations per predictor level in

combination with l = 10–15 predictor levels along the gradi-

ent are appropriate to achieve the highest possible prediction

success for a systematic error of ≤10% of total variation (see

Fig. 2 for sd.err = 0–0�1 and sd = 0�02, 0�1 and 0�2). For these
low to intermediate levels of systematic error, our simulations

highlight an increasing need of replicates with increasing ran-

dom variation to achieve the highest possible prediction suc-

cess (i.e. POP = 1) with minimum effort (lowest possible N).

This positive correlation between the level of random varia-

tion and the number of necessary replicates was significant

under the absence of a systematic error (Pearson’s r = 0�98)
as well as for a systematic error of 2% (r = 0�99) and 5%

(r = 0�98) of total variation (P < 0�001 and d.f. = 4 in all

cases). The positive effect of increasing random variation on

the number of necessary replicates increased with increasing

systematic error up to 5% of total variation. However, repli-

cation was negligible when the systematic error exceeded 10%

of total variation.

Regarding type I error problematic (chance of detecting a

non-existent pattern), the probability to erroneously detect a

pattern strongly increased with increasing systematic error

(Appendix S4). Maximum probability for erroneous pattern

detection was 30–32% when no systematic error was added

to the data but strongly increased for 5% of systematic error.

While increasing random error enhanced the probability of

erroneous pattern detection under the absence of a systematic

error (Appendix S4 for sd.err = 0), increasing random error

mitigated the effect of an increasing systematic error on erro-

neous detection probability (Appendix S4 for sd.err = 0�05,
0�1 and 0�2). Under the absence of a systematic error

(sd.err = 0), at least n = 2–3 replicates per predictor level were
necessary to avoid an erroneous detection of inexistent pat-

terns. This positive effect of taking replicates increased with

increasing random error but strongly decreased with increas-

ing systematic error (sd.err ≥ 0�05). Thus, a low to intermedi-

ate number of replicates decreased the risk of detecting

inexistent patterns but intermediate to high levels of system-

atic error (≥5% of total variation) diminished this positive

effect of replicates and significantly increased the risk of an

erroneous detection of non-existent patterns, that is led to an

inflation of the type I error.

Discussion

PREDICTION SUCCESS UNDER EXPERIMENTAL

SETTINGS VS. F IELD CONDIT IONS

Our simulations show that low numbers of predictor levels

(points in space/time sampled along spatial/temporal gradi-

ents) in combination with medium to high numbers of repli-

cates, that is the typical approach among experimental

ecologists, may not be themost effective way to detect response

shapes in environmental factors that continuously change

along gradients. Our results suggest aiming at increasing the

number of predictor levels and, in exchange, reducing but not

abandoning replication if total sample size is restricted. In

other words, it seems to be more advantageous for experimen-

tal ecologist studying gradients to move away from the

approaches typically using two to three predictor levels and

many replicates.

We recommend a similar sampling approach for field stud-

ies, which effectively control for high levels of systematic error

by a priori excluding or at least minimizing additional interfer-

ing variables that might alter the underlying pattern of interest.

Sampling a high number of predictor levels along the gradient

under investigation with no replication at individual predictor

levels, which is widespread among field- and macro-ecologists,

may not always be an appropriate solution. Instead an inter-

mediate number of predictor levels in combination with a low

number of replicates (10–15 predictor levels and 3 replicates)

seem to be in many cases a better road to prediction success

when high levels of random variation (in our case ≥5%of total

variation) and/or low to intermediate levels of systematic error

(≤5% of total variation) can be expected. If, however, higher

levels of systematic error are likely (in our case ≥10% of total

variation), continuous sampling without replication becomes

preferable compared to sampling fewer predictor levels along

the gradient with replications. This is especially the case for

field studies along gradients that do not explicitly control for

additional disturbing factors such as biotic interactions (e.g.

competition) which might alter the effect of the underlying abi-

otic driver of a biotic response (e.g. species occurrence or abun-

dance).

Comparing a set of functions that corresponds to

response shapes frequently found in ecology, we showed

that an intermediate number of 10–15 predictor levels along

the gradient under investigation in combination with three

observations per predictor level maximize prediction success

for intermediate to high levels of random variation (≥5% of

total variation) and small to intermediate levels of system-

atic error (≤5%). Thus, taking ten replicates per predictor

level, as recommended by Gotelli & Ellison (2013), based

on field experience will likely cause unnecessary oversam-

pling. This holds true for all response shapes tested in our

study: the linear response, the exponential decay and the

two unimodal response patterns with centred and shifted

maximum.

IMPL ICATION FOR FUTURE STUDIES IN ECOLOGY

The preservation of quality in scientific studies is of partic-

ular importance as ‘unreliable research’ is currently one of

the main targets of public criticism against science (e.g.

The Economist 2013). Several studies conducted in cancer

research, neuroscience and psychology, which had high

impact on society and economics, recently turned out to

lack the required reproducibility (e.g. Prinz, Schlange &

Arrowsmith 2011; Simmons, Nelson & Simonsohn 2011;

Begley & Ellis 2012; Shanks et al. 2013; Open Science Col-

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 7, 463–471
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laboration 2015), a major pillar of science. In most cases,

the reason for this was low statistical power of the studies

caused by small sample size and/or a small number of repli-

cates (Bakker, van Dijk & Wicherts 2012; Begley & Ellis

2012; Button et al. 2013). However, flawed sampling

design is not an exception, but seems to be a relatively

widespread phenomenon in science (Ioannidis 2005). To

counteract this problem, several authors strongly recom-

mend a careful sampling design based on knowledge from

previous studies (Legendre et al. 1989; Bakker, van Dijk &

Wicherts 2012). Ioannidis (2005) suggests a general

increase in sampling effort but hints at the same time at the

associated rising costs. Our simulations offer a solid basis

to further improve experimental and sampling design in

ecological studies and, thus, may play an important part in

contributing to save funds and labour without an associ-

ated loss of quality.

L IMITATIONS OF OUR SIMULATION APPROACH AND

OUTLOOK

Tomaintain the straightforward message of our study, we had

to restrict the tested simulation settings to relatively simple

functions with only onemajor gradient (predictor).We assume

that this covers the situation in a significant fraction of ecologi-

cal studies as well as studies from other disciplines. However,

the simulation and testing framework presented here could

possibly be extended to more complex function types (like

breakpoint or sigmoid functions; Matthews et al. 2014 or

power functions; e.g. Dengler 2009) or to more than one pre-

dictor of interest (multifactorial or mixed effect models). The

latter is particularly relevant in experimental studies where two

ormore factors are crossed (factorial design), but also in obser-

vational studies where often more than one environmental dri-

ver of biotic patterns interact.

Furthermore, we equidistantly placed the predictor levels

(sampling locations) along the gradient under study. We,

thus, did not consider the effect of preferential sampling

along environmental gradients which is, for example applied

by the gradient-oriented sampling (gradsect method; Gillison

1984) or the adaptive-sampling approach (Thompson &

Seber 1996). As organisms are often not randomly dis-

tributed along environmental gradients but lump in preferen-

tial ranges (Fortin, Drapeau & Legendre 1989; Legendre

et al. 1989), future studies should also elaborate on the effect

of preferential sampling to further increase sampling effi-

ciency. However, the need of detailed a priori knowledge

about the ecological niche characteristics that is still lacking

for many organisms may hamper preferential sampling.

While all these mentioned topics can be seen as a limitation

of the present study, our results provide a first, clear and

reproducible guideline about how to optimize sampling along

ecological gradients.

Our study did explicitly not implement standard goodness-

of-fit approaches (like R2, or f-statistic based p-values) as these

measures are susceptible to systematic errors. Sampled data

modified by systematic error might be perfectly predicted by a

model, which does not match the ‘true’ underlying pattern.

This is particularly true in scenarios with few predictor levels

andmany replicates where an erroneousmodel could still score

high R2 values, leading to entirely wrong conclusions. These

erroneous conclusions caused on high values of standard

goodness-of-fit approaches stress the importance of approach-

ing scientific questions with consistent theory and quantifying

possible sources for systematic errors.

Our simulations show that replication is inevitable in experi-

mental studies and advisable for observational field studies,

unless unaccounted systematic errors occur, potentially dis-

torting the underlying pattern. This is especially true, when the

random error is high. However, optimal sampling strategies

have to be selected context-dependent and differ with the

required accuracy, which has to be achieved, as well as the

number (uni- or multivariate) and the mathematical character

(discrete or continuous variables) of the variables tested in the

particular study (Kenkel, Juh�asz–Nagy & Podani 1989).

Although this context dependency of sampling strategies seems

to impede general statements about optimal sampling strate-

gies, a systematic and reproducible approach like ours could

help to set clear framework conditions on which future studies

could build on in order to further optimize sampling in ecology

and possibly also in other scientific disciplines. Based on our

results, we infer basic guidelines for gradient sampling in

Box 1.
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Box 1. Optimal gradient sampling in a nutshell for situations with one major gradient (or one factor to be tested) and whenmore complex response

shapes than those of Table 1 are not expected.

1. In controlled environments (i.e. experiment-like settings): Intermediate number of points in space/time sampled along spatial/temporal gradi-

ents (10–15) and a low number of replicates per point (3) suggest a total sample size of 30–45. This approach is also sensible for field ecologists, if
confidence is high that a possible systematic error (i.e. unknown additional predictor variables) is controllable.

2. Under field conditions (i.e. high levels of systematic error): If systematic errors are unaccountable or are likely to be high, gradual sampling

with no replication should be preferred. However, predictor levels and sample size necessary to obtain high prediction success strongly increase

with increasing systematic error (in our case on average>200).

3. Type I error inflation by systematic errors: The probability of an erroneous detection of a non-existent pattern (type I error) significantly

increases with increasing systematic error (bias in the data which is constant but unknown).
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Data accessibility

This study was conducted with artificial data which can be reproduced by follow-

ing the methods section of this manuscript or by using the R-script which can be

found in the electronic appendix.
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Appendix S1. Prediction success depicted as the precision of prediction

(POP) for all five tested response patterns (A: no response, B: linear, C:

exponential decay, D: unimodal centered, E: unimodal non-centered)

and the average (F).

Appendix S2. Prediction success depicted as the fraction of correctly

detected response types (FCR, A,C and E) as well as the precision of

prediction (POP, B, D and F) for different levels of random variation

of the response variable based on an average of the tested response pat-

terns.

Appendix S3. Prediction success depicted as the fraction of correctly

detected response types (FCR) for three different levels of random vari-

ation (SD = 2%, 10% and 20% of total variation) and four different

levels of systematic error (SE = 0%, 5%, 10% and 20% of total varia-

tion) based on an average of the tested response patterns (without no-

response).

Appendix S4. Probability of erroneous predictions depicted as the frac-

tion of erroneous detected response types (FER) for three different

levels of random variation (SD = 2%,10%and 20%of total variation)

and four different levels of systematic error (SE = 0%, 5%, 10% and

20%of total variation) based on the no response pattern.

Data S1. Simulation scripts for R.
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