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INTRODUCTION

The availability and importance of observation-based
research has increased in recent years due to the prolifera-
tion of both digital data and global environmental threats
that cannot be manipulated experimentally (Sagarin &
Pauchard, 2010). While infrequently stated, most observa-
tional studies in ecology are aimed at answering causal
questions, such as “What is the effect of protected areas on
biodiversity?” (Gray et al., 2016). Yet, the prohibition of
causal language for nonexperimental data promoted by
Pearson and Fisher (Glymour, 2009) has constrained the
use of observational data to answer fundamental causal
questions in ecology. These opportunities and challenges
highlight the importance of coherent methods to properly
analyze observational data and attain accurate conclusions
about ecological systems and processes.

causal implications.

Recent developments in computer science have substantially advanced the use
of observational causal inference under Pearl’s structural causal model (SCM)
framework. A key tool in the application of SCM is the use of casual diagrams,
used to visualize the causal structure of a system or process under study. Here,
we show how causal diagrams can be extended to ensure proper study design
under quasi-experimental settings, including propensity score analysis, before-
after-control-impact studies, regression discontinuity design, and instrumental
variables. Causal diagrams represent a unified approach to variable selection

across methodologies and should be routinely applied in ecology research with

backdoor criterion, before-after-control-impact, causal diagrams, causal inference, directed
acyclic graphs, instrumental variable, observational data, propensity score, regression
discontinuity design, structural causal model

Developments in observational causal inference have
been spurred largely by the work of computer scientist
Judea Pearl, whose structural causal model (SCM;
Pearl, 2009) provides a comprehensive framework that
utilizes causal diagrams to determine cause and effect
relationships from purely observational data. Causal dia-
grams explicitly state the direction of causal associations
between variables in a system and, in doing so, reveal
noncausal (spurious) associations as well. By ensuring
that researchers explicitly and transparently state their
causal assumptions, causal diagrams invite critical recep-
tion and feedback that is typically difficult to frame.

What has gone unrecognized is that causal diagrams
and principles from the SCM framework can also lead to
effective study design across a range of quasi-experimental
methods, including propensity score analysis, before-after-
control impact (BACI) studies, regression discontinuity
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design (RDD), and instrumental variables (IV; Butsic
et al., 2017). Quasi-experimental approaches are widely
used among other disciplines, and in recent years, ecolo-
gists have argued for their increased use with ecological
observational data (e.g., Butsic et al, 2017, Larsen
et al., 2019; Wauchope et al., 2021). However, determining
causal relationships from quasi-experimental methods
requires proper study design that benefit from explicit
communication about a researchers’ causal assumptions
(Adams et al., 2019; Ferraro et al., 2018). Here, we show
how the principles of SCM and application of causal dia-
grams can extend across quasi-experimental approaches to
lead to more robust causal inference from observational
data. Using simulated data (with known causal effects),
we show how the application of causal diagrams can
return accurate causal estimates, as well as highlight how
biases can arise when they are not considered.

STRUCTURAL CAUSAL MODEL

Pearl’s SCM framework (Pearl, 2009) provides a compre-
hensive theory of causation by unifying structural equa-
tion models (Wright, 1921) with the potential outcome
framework (Rubin, 2005) and other theories of causation.
Although the mathematical underpinning is quite com-
plex (Pearl, 2009), one of the advantages of applying SCM
is that it reduces complicated equations and mathematical
theory into a graphical application of rules using directed
acyclic graphs (DAGs) to visualize and quantify causal
relationships.

Directed acyclic graphs are causal diagrams that repre-
sent the causal structure of a system or process under study
(Grace & Irvine, 2020). Specifically, nodes within a DAG
represent variables, with directed arrows between nodes
representing possible causal effects (e.g., X — Y shows
that X affects Y). Directed acyclic graphs are also acyclic,
meaning that they cannot contain bidirectional relation-
ships or a feedback loop where a variable causes itself
(Elwert, 2014). However, they can still represent ecolog-
ical systems with bidirectional relationships by more
finely articulating the temporal sequence of events
(Greenland et al., 1999).

Directed acyclic graphs are created based on
researchers’ domain knowledge, which can be supported by
expert opinion, scientific consensus, and relevant literature
(e.g., Cronin & Schoolmaster, 2018; Grace & Irvine, 2020;
Schoolmaster Jr et al., 2020). They must include all mea-
sured and unmeasured variables required to depict the sys-
tem or process under study, as well as all common causes
of any pair of variables included in the DAG (Spirtes
et al., 2001). For example, to determine the effect of X on Y,
our DAG must include X, Y, common causes of X and Y,

and common causes of any pair of variables that are now
included in the DAG.

As an ecological example, the DAG in Figure 1 repre-
sents the causal structure of how marine protected areas
(MPAs) are expected to influence reef fish biomass for a
hypothetical coral reef system, created based on past lit-
erature and expert knowledge of coral reef ecologists
(Appendix S1: Table S1). We have created a simulated
dataset based on the causal structure depicted in
Figure 1, setting our known causal effect of MPA on reef
fish biomass to 1.089 (Appendix S1: Section S1.2). We
will use our DAG and associated simulated data to show
how the application of SCM can lead to the accurate
causal estimate of MPA on reef fish biomass.

Once a DAG has been created, it can be tested against
the associated observational data to ensure DAG-data
consistency. Simply put, a specified DAG will have (often
many) independencies (e.g., X is independent of Y) and
conditional independencies between variables (e.g., X is
independent of Y, given Z) that should be consistent with
the associated observational data, if both the DAG and
observational data are representative of the data generat-
ing process (Pearl, 2009; Textor et al., 2016; Appendix S1:
Section S1.3). If all implied independencies are compati-
ble with the data, it provides support for a DAG. Given
our DAG, there are 12 conditional independencies that
are implied by our DAG (Appendix S1: Section S1.3).
Using the package “dagitty,” we can test our DAG against
our simulated data, which shows that all implied inde-
pendencies are consistent with our simulated dataset
(Appendix S1: Section S1.3). We note that if a DAG does
not pass DAG-data consistency, it must be tweaked until
DAG-data consistency is ensured (Grace & Irvine, 2020;
Textor et al., 2016). We also note that since several DAGs
may pass DAG-data consistency, it is imperative that a
finalized DAG is first and foremost justified through
domain knowledge (e.g., through the literature, expert
knowledge, and past experiments).

Once a DAG is finalized and ensures DAG-data con-
sistency, we can apply a graphical procedure known as
the backdoor criterion to determine the sufficient set for
adjustment required to determine the effect of X on Y, or
in this case MPA on reef fish biomass. The application of
backdoor criterion is based on an algebraic procedure
known as do-calculus, which equates observational distri-
butions to what would be expected under a randomized
control experiment (Pearl, 1993). While the application of
do-calculus can make for challenging reading, based on
its derived inferences rules, the backdoor criterion pro-
vides DAG-based graphical rules that can be applied to
estimate causal effects from observational data.

Specifically, the backdoor criterion instructs us to
block all backdoor paths between our predictor and
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FIGURE 1 A directed acyclic graph (DAG) representing the
causal structure between a marine protected area (MPA) and coral
reef fish biomass

response variable, X and Y. A backdoor path is a
sequence of arrows and nodes connecting X and
Y variables with an arrow pointing into both X and Y. If
left open, these backdoor paths create bias and induce
spurious correlation by providing an indirect, noncausal
path along which information can flow.

The backdoor criterion:

The backdoor criterion (Pearl, 1993, 2009)
states that a set of variables, Z, is sufficient
for estimating the causal effect of X on Y if
variables in Z block all backdoor paths from
X to Y. To block a backdoor path between
X and Y, the path must be “d-separated”
(Pearl, 1988). A path between X and Y can be
d-separated if either:

1. the path contains at least one arrow-emitting variable
that isin Z or

2. the path contains at least one collider variable
(a variable with two incoming arrows, for example,
B is a collider variable in A — B «— C) that is outside
Z and has no descendant in Z.

For our DAG, there are two backdoor paths between
MPA and reef fish biomass that must be d-separated (i.e.,
blocked):

1. MPA « Structural Complexity — Reef Fish Biomass
2. MPA « Depth — Fishing  Pressure — Reef  Fish
Biomass

The first backdoor path can be blocked by adjusting for
structural complexity, and the second backdoor path can
be blocked by adjusting for depth. Therefore, to block all
backdoor baths, we must adjust for both structural com-
plexity and depth.

We note that the application of the backdoor criterion
can become complicated as we move on to larger and more
complex DAGs (see Appendix S1: Section S1.3 for example).
In some cases, more than one adjustment set may be avail-
able to determine the causal effect of X on Y. In these sce-
narios, it is best to choose the adjustment set with the
lowest measurement error. Other times, the adjustment
set(s) required may not be available due to the presence of
unmeasured variables. To avoid this scenario, we recom-
mend that researchers think critically and draw potential
DAGs before collecting observational data. Given that the
application of the backdoor criterion can become difficult to
apply for increasingly complex DAGs, researchers can draw
their DAG on www.daggity.net (instructions within site),
which will apply the backdoor criterion and generate the
adjustment set(s) required to determine causal effects, given
a specified DAG and causal question.

Once the backdoor criterion is applied to determine
the sufficient set for adjustment, we must choose an
appropriate statistical model for analysis. Directed acyclic
graphs are used to guide covariate selection (i.e., which
variables to adjust for) and are not the estimation
method; therefore, ecologists must select the statistical
approach that best fits their data and study question.
Directed acyclic graphs are nonparametric, meaning that
they make no assumptions about the distribution of vari-
ables (e.g., normally distributed) or the functional form
of causal effects (e.g., linear, nonlinear, and stepwise). As
such, they are compatible with a wide range of statistical
analysis (e.g., generalized linear model or hierarchical
Bayesian model). Here, since our simulated data were
created using linear relationships, we have applied a
GLM. Our GLM specifies reef fish biomass as the
response variable, MPA as the predictor, and includes
depth and structural complexity as controls. We interpret
the coefficient of MPA as our total causal estimate on reef
fish biomass. Here, our causal estimate of MPA on reef
fish biomass returned an accurate estimate of 1.17 [1.08,
1.26], with the 95% CI including the true causal effect of
1.089 (Appendix S1: Section S1.4).

It is important to note that covariate selection based
on the backdoor criterion eliminates common statisti-
cal biases including confounding, overcontrol, and col-
lider bias that often plague observational studies
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(Elwert, 2014; Pearl, 2009). Confounding bias occurs
when a common cause between predictor and response
is not adjusted for. Given our DAG, if no adjustments
are made, confounding bias would arise from depth
and structural complexity, which effect both MPA and
reef fish biomass. Indeed, a GLM with no adjustments
gave an inaccurate estimate of 3.40 [3.32, 3.48] for the
effect of MPA on reef fish biomass (Appendix S1:
Section S1.5).

Lesser known, but equally important, are overcontrol
and collider bias. Overcontrol bias occurs when an inter-
mediate variable between predictor and response is
adjusted for, blocking the causal association between pre-
dictor and response. Given our DAG, adjusting for fishing
pressure would lead to overcontrol bias, giving an inaccu-
rate estimate of —0.10 [—0.16, —0.04] for the MPA effect,
even when depth and structural complexity are adjusted
for (Appendix S1: Section S1.5). Collider bias occurs
when a variable affected by both predictor and response
is adjusted for, creating a spurious association between
predictor and response. Given our DAG, adjusting for
coral cover would lead to collider bias, giving an inaccu-
rate MPA estimate of —0.13 [—0.15, —0.11] (Appendix S1:
Section S1.5). Collectively, the application of the back-
door criterion eliminates all three statistical biases, all-
owing for accurate causal estimates.

The SCM framework can be employed across a range
of observational ecological studies (e.g., Cronin &
Schoolmaster, 2018; Grace & Irvine, 2020; Schoolmaster
Jr et al., 2020). Importantly, causal diagrams (DAGs) and
the principles of SCM (e.g., the backdoor criterion) can
be applied to ensure proper study design across other
quasi-experimental approaches that have gained traction
within ecology (Butsic et al., 2017; Larsen et al., 2019),
including propensity score analysis, BACI studies, RDD,
and IV.

MATCHING METHODS

Matching methods are often employed to remove con-
founding bias within observational studies (Stuart,
2010). Matching methods aim to balance the distribution
of covariates between treatment and control groups
(Figure 2a). Covariates placed in a matching procedure
should include confounding variables assumed to affect
both treatment assignment (e.g., MPA placement) and
the outcome (e.g., reef fish biomass), thereby minimizing
confounding bias (Rubin and Thomas, 1996).
Implementing matching methods first requires the selec-
tion of a distance measure, used to define how close two
units are based on selected covariates. Several distance
measures are available to researchers, including

propensity scores and Mahalanobis distance (Stuart,
2010). Distance measures are subsequently used to
match treatment and control units, which can be done
through several matching methods including nearest
neighbor matching, optimal matching, and exact
matching (Stuart, 2010).

Matching methods have been employed across a range
of ecological systems to determine the causal effect of treat-
ments, including the effect of protected areas on natural for-
ests (Andam et al, 2008; Herrera et al., 2019) and
freshwater species (Chessman, 2013), the effect of agricul-
ture on stream ecosystems (Pearson et al., 2016), and the
impact of invasive species management on tree condition
(Ramsey et al., 2019). However, although past studies state
the confounding variables used in their matching proce-
dure, it is unclear how these confounding factors interact
with one another within the broader causal structure of a
study system. Without this knowledge, it is unclear whether
there are unobserved or unmentioned variables that need
to be included in the matching analysis or whether the
inclusion of all selected variables may lead to other forms of
bias (e.g., overcontrol or collider bias).

To resolve these issues, matching methods can make
use of causal diagrams (i.e., DAGS). As previously noted,
after creating a DAG and ensuring DAG-data consistency,
researchers can apply the backdoor criterion to determine
which covariates need to be adjusted for to determine the
causal effect of X on Y. Under matching procedures, the
set of covariates that enter the matching procedure must
satisfy the backdoor criterion (Pearl, 2009). For example, if
we choose propensity score matching, then given our
DAG (Figure 1), to determine the effect of MPA on reef
fish biomass, depth and structural complexity must enter
the propensity score for MPA placement (Appendix S1:
Section S2). To ensure covariate balance is achieved, we
can employ balancing tests, which are often applied across
matching procedures (Appendix S1: Section S2). When
this is done, and our propensity score is used as a covariate
adjustment, we return an accurate causal estimate for
MPA of 1.17 [1.07, 1.27] (Appendix S1: Section S2).

Employing the backdoor criterion also eliminates other
forms of bias that can occur within matching methods,
including overcontrol and collider bias (Mansournia
et al., 2013; Pearl, 2009). For example, if all available vari-
ables entered our propensity score, this would ultimately
lead to overcontrol bias (due to the inclusion of an interme-
diate variable, fishing pressure) and collider bias (due to the
inclusion of a collider variable, coral cover), giving an inac-
curate MPA causal estimate of —0.19 [-0.29, 0.11]
(Appendix S1: Section S2). Additionally, DAGs include both
measured and unmeasured variables needed to depict a
complete causal structure, thereby explicitly stating any
missing variables that must be considered. This is critical as
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FIGURE 2 Quasi-experimental approaches: (a) propensity score analysis, (b) before-after-control-impact (BACI), (c) regression

discontinuity design (RDD), (d) instrumental variable (IV)

Matching Methods:

O Matching methods (e.g., propensity score
analysis) selects control and treatment
groups that are similar across selected
covariates—based on confounding
variables—to reduce confounding bias

Benefit of Causal Diagrams:

O Allows appropriate selection of variables
to enter the propensity score, reducing
confounding, overcontrol, and collider
bias

Before-after-control-impact (BACI):

O BACI measures a response both before
and after an intervention for both
treatment and control group(s); difference
in the rate of change between treatment

and control is attributed to the
intervention

Benefit of Causal Diagrams:

O Clarifies whether all assumptions of the
BACI approach are met; allows researchers
to identify and adjust for confounding

Regression Discontinuity Design
(RDD):

O RDD selects treatment and control groups
from either side of a discontinuity, where
confounding variables are expected to be
similar

Benefit of Causal Diagrams:
o Explicitly communicates a researchers’
assumptions about why a chosen

discontinuity is expected to eliminate bias

Instrumental Variable (1V):

O Aninstrument is used to determine the
effect of a predictor on response when
otherwise unfeasible (e.g., in the presence
of an unmeasured confounding variable)

Benefit of Causal Diagrams:

O Clarifies whether all assumptions of the IV
approach are met (e.g., exclusion
criterion)

the omission of unmeasured variables required in a back- BEFORE-AFTER-CONTROL-IMPACT

door adjustment set can lead to bias (Pearl, 2009). Collec-

tively, the application of the backdoor criterion on DAGs If observational data are available both before and after an
helps determine covariates that must and must not enter a event, BACI (Green, 1979) designs can be used to assess the
matching procedure, while also communicating the model’s effect of interventions, including anthropogenic distur-
assumed causal structure. bances or environmental management actions. Before-after-
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control impact works by measuring a response (e.g., reef
fish biomass) both before and after an intervention
(e.g, MPA placement) for both treatment and control
site(s). Before-after-control impact rests on the assumption
that trends in the treated and control groups would be iden-
tical if the intervention did not occur, meaning any differ-
ence in the rate of change between treatment and control is
attributed to the intervention (Figure 2b).

Before-after-control impact and its extensions
(e.g., BACIPS, Stewart-Oaten et al., 1986; Progressive-
change BACIPS, Thiault et al., 2017) have been applied
across various ecological studies, including to determine
the effects of invasive species on invertebrates (Kadye &
Booth, 2012), restoration programs on biota (Bousquin &
Colee, 2014; Suren et al., 2011), and MPAs on coral reef
fish communities (Thiault et al., 2019). Wauchope
et al. (2021) further show how to analyze BACI data to
determine trend and immediate change, in addition to
average change, which may better capture ecological
responses to interventions. However, although BACI study
designs have the potential to provide valid causal infer-
ence, past reviews have noted the prevalence of improper
study design, where the consideration of all relevant vari-
ables is often neglected, particularly joint consideration of
both ecological and human factors (Adams et al., 2019;
Ferraro et al., 2018). Here, DAGs can allow researchers to
consider all relevant variables and clarify the assumptions
required for appropriate BACI studies.

Let us consider a standard BACI design, which is also
referred to as difference-in-difference in some fields
(Wauchope et al., 2021). Given our asserted DAG and the
application of the backdoor criterion, we know that
depth and structural complexity are confounding vari-
ables that must be accounted for to determine the effect
of MPA on reef fish biomass. A strength of a BACI design
is that it already accounts for certain confounding vari-
ables. Confounding in BACI designs occurs only if a vari-
able (1) effects the treatment group and (2) has an effect
on the outcome trends, which can occur when a variable
has a time-varying difference between treatment groups
or a time-varying effect on the outcome (Zeldow &
Hatfield, 2021). In our simulation, neither depth nor
structural complexity have a time-varying difference
between treatment groups or a time-varying effect on the
outcome, so the application of a BACI analysis will
return an accurate causal estimate for MPA of 1.07 [0.96,
1.20], without the need to adjust for these variables
(Appendix S1: Section S3). Critically, when designing
BACI studies, researchers must ensure that the variables
in a backdoor adjustment set are accounted for, either by
design or through appropriate statistical adjustments. For
example, if a bleaching event occurred after initial MPA
placement, and disproportionately reduced the structural

complexity across MPA sites, structural complexity would
now act as a confounding variable by having a time-
varying difference between treatment groups. Under these
circumstances, our BACI analysis returns an inaccurate
causal MPA estimate of 0.19 [0.08, 0.30; Appendix SI:
Section S3]. However, we can return an accurate estimate
of 1.06 [0.97, 1.16] by making the appropriate adjustment
for structural complexity (Appendix S1: Section S3). We
refer readers to Zeldow and Hatfield (2021), who provide
instructions on how to adjust for confounding variables,
when they do arise in BACI studies.

Given the need for proper study design (Adams
et al., 2019; Ferraro et al., 2018), using causal diagrams to
guide BACI studies will ultimately lead to more impactful
and accurate causal estimates due to the extra care taken
to understand where and when causal assumptions can
be met. In addition, researchers can also employ placebo
tests used in BACI studies to further support their causal
conclusions; for example, researchers can apply a BACI
analysis using only pretreatment data, which should
show a lack of causal effect (e.g., Schnabl, 2012). As such,
the integration of causal diagrams with BACI can lead to
additive methods for supporting causal claims, which in
turn lead to more comprehensive causal conclusions.

REGRESSION DISCONTINUITY
DESIGN

Regression discontinuity design aims to minimize the effect
of confounding bias by exploiting a discontinuity in either
space, time, or policy to separate observations into treat-
ment and control groups (Imbens & Lemieux, 2008). The
key assumption is that at or near this discontinuity, con-
founding variables are equal between treated and control
groups. If the underlying confounding variables are similar
before and after the change, then the treatment effect can
be estimated by comparing the average difference between
treated and control groups (Figure 2c). Although past
review papers have highlighted the potential of RDD in
ecology (Butsic et al., 2017), it remains underutilized. We
could find only one example of its use for causal inference,
a conference paper studying the effect of protected areas on
deforestation, population settlements, and road infrastruc-
ture that used the border of protected areas as the disconti-
nuity with treatment and control groups being comprised of
study sites from each side (Perez et al., 2017).

Despite limited use to date, RDD provides a strong
causal inference approach across ecological studies
whenever there exists a sharp break between treatment
groups across observational units, including protected
area borders, fishing and land use zones, species ranges,
and soil types (Butsic et al., 2017). Yet, here again causal
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FIGURE 3 An alternative directed acyclic graph (DAG)
representing the effect of a marine protected area (MPA) on reef
fish biomass under a regression discontinuity design where only
data near a discontinuity (MPA border) are considered

diagrams should be utilized to visualize how exploiting a
discontinuity can break the backdoor (i.e., noncausal)
paths between predictor and response. For example, to
determine the effect of MPA on reef fish biomass, we can
use the MPA border as our discontinuity if confounding
variables (depth and structural complexity) are approxi-
mately the same on either side and fish do not readily
move across the boundary. Figure 3 uses a DAG to repre-
sent the causal structure between MPA and reef fish bio-
mass within this kind of RDD design. Here, our
observational data come only from our discontinuity
range, on either side of MPA border. As such, depth and
structural complexity no longer act as confounding vari-
ables, meaning the effect of MPA on reef fish biomass
can be estimated without needing to adjust for additional
variables (i.e., there are no backdoor paths between MPA
and reef fish biomass within this discontinuity). A simu-
lated dataset using data only from this discontinuity (fol-
lowing the causal structure in Figure 3) returned an
accurate causal estimate of MPA on reef fish biomass,
1.08 [0.66, 1.49] (Appendix S1: Section S4).

Visualizing RDD with causal diagrams is particularly
important in ecology due to the complex nature of causal
connections that may exist near a chosen discontinuity.
Directed acyclic graphs allow researchers to visualize the
causal structure near a discontinuity, to help ensure proper
study design. Although underutilized, well thought out

RDD communicated through causal diagrams can provide
effective and transparent observational causal inference and
should be more routinely used. Placebo tests used within
RDD studies (e.g., using pretreatment variables as placebo
outcomes) can further be employed to provide additional
support for causal conclusions (Eggers et al., 2021).

INSTRUMENTAL VARIABLES

An IV approach (Kendall, 2015) can be used to determine
the effect of X on Y in the presence of an unmeasured
confounding variable, leading to confounding bias, or
bidirectional relationships, which can generate simulta-
neity bias. For example, the DAG in Figure 2d shows that
the effect of predictor on response cannot be determined
from a simple regression analysis due to the presence of
an unmeasured confounding variable. In such cases, an
instrument, Z, can be used to determine the effect of
X on Y if it meets three requirements (Hernan &
Robins, 2006). First, Z must be correlated with the predic-
tor variable; the stronger the correlation, the more effec-
tive the instrument Z will be. Second, Z must not have a
direct causal effect on the response variable and must
only be associated with outcome Y through X, known as
the exclusion criterion. Third, there must be no con-
founding variables that affect both Z and Y. If these three
requirements are met, Z can be used as an instrument to
determine the effect of X on Y through a two-stage regres-
sion (Kendall, 2015).

Finding an instrument that satisfies all three criteria
can be difficult practice, which may limit its use in ecologi-
cal studies. However, when applicable, IV remains a pow-
erful technique that can be used to prevent confounding
and simultaneity bias across observational ecological stud-
ies. Already, several implementations of IV exist within
the ecological literature: Busch and Cullen (2009) used site
accessibility measures as instruments to determine the
effectiveness of endangered species recovery treatments;
Amin et al. (2015) used biodiversity as an instrument to
determine the effect of protected areas on deforestation;
and Butsic et al. (2015) used multiple instruments to deter-
mine the effect of warfare, mining, and protected areas on
deforestation.

When implementing IV, causal diagrams should be
drawn to depict the complete causal structure of a sys-
tem under study and accurately assess whether a cho-
sen instrument meets the necessary requirements. For
example, Figure 4a depicts a DAG where X and Y are
confounded by an unmeasured variable U. Here, our
instrument, Z, does not initially satisfy the exclusion
criterion because it effects Y through another interme-
diate variable, V: Y «+ V « Z. To satisfy the exclusion
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FIGURE 4 Directed acyclic graphs (DAGs) under two
instrumental variable scenarios: (a) represents a scenario where an
instrument, Z, can be used to determine the effect of X on Y, while
(b) represents a scenario where an instrument, Z, cannot be used to
determine the effect of X on Y because it cannot meet the exclusion
criterion

criterion, we must block (d-separate) this pathway by
adjusting for V. Once this is done, Z can be used as an
instrument to determine the effect of X on Y. We can
additionally test our causal assumption that our IV, Z,
is sufficiently correlated with our predictor variable, X,
by testing against weak instruments, which is com-
monly employed across IV studies (e.g., Staiger &
Stock, 1997; Appendix S1: Section S5). Following this,
an IV approach on our simulated data, using
Z as our instrument and adjusting for V, returns an
accurate causal estimate of 1.11 [1.07, 1.15] for X on
Y (known causal estimate of 1.089; Appendix S1:
Section S5).

As another example, the DAG in Figure 4b also
requires adjustment for V to block the additional path
from Z to Y: Y — V « Z. However, in doing so, we open
another path between Z and Y: Y« U2 — V «— Z. V acts
as a collider variable (variable with two incoming arrows)
in this path, which we open when adjusting for it. To
block this additional path, we must also adjust for U2.
However, U2 is an unmeasured variable and therefore
cannot be adjusted. In this scenario (Figure 4b), Z cannot
act as an instrument to measure the effect of X on Y. A
two-stage regression that did not adjust for U2 returned
an inaccurate estimate of 0.73 [0.69, 0.78] for X on
Y (known causal estimate of 1.089; Appendix S1: Section-
S5). By utilizing causal diagrams, we explicitly communi-
cate our assumptions about the causal structure between
an instrument, predictor, and response variable, and
accordingly, ensure that the assumptions required for an
IV approach are satisfied. As such, the use of causal dia-
grams can lead to more accurate implementation of the
IV approach.

CONCLUSION

Although causal diagrams are underutilized within ecol-
ogy, they hold tremendous potential for guiding effective
causal inference across a range of observational contexts.
Here, we have highlighted their utility across four addi-
tional quasi-experimental approaches, showing how the
use of causal diagrams clarifies and unifies variable selec-
tion in nonexperimental settings. Their use will also help
to produce more transparent communication about
causal assumptions, leading to more critical and accurate
discussion about the conclusions that can be drawn from
ecological research. Further, the integration of causal dia-
grams with quasi-experimental methods leads to additive
methods for supporting causal claims (e.g., balancing
tests for matching methods, placebo tests for BACI and
RDD designs, and test for weak instruments for IV
approaches), which can lead to more comprehensive
causal analysis. Utilizing causal diagrams across quasi-
experimental methods can lead to more accurate and
comprehensive causal analysis. The consequences of such
a change are profound—from management and policy
decision making, to the development of ecological laws,
ecology must embrace a causal understanding of our
data-rich and radically changing natural world.
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