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Summary

1. Autonomous underwater vehicles (AUV), which collect images of marine habitats, are now an established

sampling tool. The use of AUVs is becoming more widespread as they offer a non-destructive method to survey

substantial spatial areas. The design of AUV surveys has historically been based on expert knowledge andAUV-

specific considerations, such as reducing geolocation error. The expert knowledge encompasses intuition, previ-

ous surveying experiences and holistic knowledge of the study region.

2. We investigate the statistical aspects to AUV survey design for estimation of percentage cover of key benthic

biota. We investigate the presence of spatial autocorrelation in AUV data using model-based geostatistics and

examine the effect of autocorrelation on survey design by examining different design strategies – methods for

placing AUV transects. The design strategies are assessed by inspecting the expected bias and the expected stan-

dard deviation ofmodel predictions, where themodel depends on the choice of design.

3. The AUV data exhibited a wide range of autocorrelation, from non-existent to substantial. The design strate-

gies varied in their statistical performance and nearly all strategies had shortcomings. Design strategies that were

consistently poor performers had (i) transects placed in parallel in a single spatial dimension and (ii) made no

attempt to spread out the transects in space. The superior design types had more transect-to-transect separation

(but not toomuch) and effectively spanned important covariates.

4. The results give guidelines to researchers designing AUV surveys for biological mapping and for monitoring.

In particular, we demonstrate that any spatial design should seek spatial balance, such as would be introduced

by a systematic or stratified component within a randomized design. Knowledge of the system under study

should be incorporated and, if possible, should be done so in a formalmanner that is objective and repeatable.

Key-words: autocorrelation, autonomous underwater vehicles, geostatistics, GRTS, integrated

nested laplace approximation, mat�ern, model-based design, temperate reef

Introduction

A fundamental goal for all ecological surveys is that the result-

ing data should be able to answer the questions for which it

was collected. Ideally, the survey should also aim to be optimal,

multi-purposed, robust and feasible (e.g. Atkinson 1996; Stevens

& Olsen 2004; Robertson et al. 2013). This means that the sur-

vey will provide the best value for money in terms of informa-

tion content, provide sufficient information for a variety of

disparate reasons/taxa (if required) and provide sufficient

information if the survey is compromised due to fieldwork

logistics, and be practical.

The survey design for a spatial region is the choice of the

number of samples and the locations of those samples within

the region. It may also include the choice of ecological compo-

nents to measure (e.g. abundance of a species) as well as how

these quantities get measured (e.g. laboratory replications and

subsampling). It is our experience that many ecological

researchers tend to be pragmatic about survey design. They

base the design on their previous surveying experiences and

holistic knowledge of the study region. Often, the resulting sur-

veys generate data that provide an adequate, or even good,

representation of the study region. Nevertheless, these surveys

could be streamlined for both cost and researcher effort, with a

minimal drop in statistical efficiency.

In this article, we focus on survey design in the marine realm

where autonomous underwater vehicles (AUVs) are a power-

ful tool for obtaining non-extrusive ecological samples. We

focus on design implications for inference about biota, which

is our primary interest and is sampled by images, rather than

using images to inform about the AUV’s location – methods

for accurately estimating the AUV location presented in Kim

& Eustice (2009) and Williams et al. (2010). Images, such as

those obtained from an AUV, have many advantages over

traditional sampling methods such as dredges, trawls and*Correspondence author. E-mail: scott.foster@csiro.au
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grabs as they are non-extractive, and it is relatively easy and

cheap to acquire substantial amounts of data (Williams et al.

2012). Images from an AUV are typically higher quality than

those from other image-based platforms as they maintain a

constant height above the seafloor, provide even illumination

for photography and track pre-planned routes so that the

images can be accurately geolocated. The data are permanently

stored and can be revisited for new research directions and for

quality control. AUVs are recognized as an ideal tool for image

acquisition (see Williams et al. 2012), and in the future, under-

water images will provide one of the major tools for continen-

tal and regional sampling for a variety of different objectives.

These objectives include the studies of species and communities

(Grasmueck et al. 2006; Clarke, Tolimieri, & Singh 2009;

Sherman & Smith 2009; Bridge et al. 2011), extreme and sensi-

tive environments (Singh et al. 2004; Armstrong et al. 2006;

Sherman & Smith 2009), invasives (Barrett et al. 2010) and

monitoring for fisheries management (Smale et al. 2012).

Despite the obvious appeal of AUVs, there remain statistical

issues with how the resulting data are used. Spatial dependence

(autocorrelation), if present in the data, is likely to be impor-

tant as it changes important qualities of the data. This change,

when coupled with a model or method that ignores autocorre-

lation, will lead to optimistic standard errors of the parameter

estimates. However, the autocorrelation can be exploited,

using geostatistical methods, to produce predictions that have

lower variance than those from a comparable form. Unfortu-

nately, autocorrelation is typically ignored in the analysis of

AUV data (e.g. Bridge et al. 2011; Smale et al. 2012). Similar

platforms such as towed video and remotely operated vehicles

will exhibit similar qualities to AUVs in that autocorrelation is

hard to avoid and that it is frequently ignored. Autocorrelation

in data from these platforms is likely as data are acquired with

small spatial separation, as the images are necessarily spatially

aggregated into transects. Consideration of these inherent data

qualities should have direct implications for how to design

future data collection efforts. Careful survey planning will

streamline, or even optimize, the effort and cost required to

obtain the data resource.

Autonomous underwater vehicle surveys are generally con-

ducted for the purpose of providing information on the distri-

bution and abundance of species and/or communities of

interest. In a statistical sense, these aims can be incorporated

into prediction; either an areal quantity is predicted, such as the

average prevalence in a region, or a location-specific quantity

is predicted, such as the probability of presence at that site.

Combined over many locations, the location-specific predic-

tions form a predicted distributionmap.

The statistical issues surrounding survey design for AUVs

share similarities with other well-established and emerging eco-

logical sampling techniques. Researchers have been sampling

by measuring quadrats spaced along a transect for decades

(example applications are Stohlgren, Bull & Otsuki 1998; Bar-

rett, Buxton & Edgar 2009). However, unlike this sampling

strategy, transects for an AUV survey are often nonlinear and

crossover, which facilitates higher geolocation accuracy

(Williams et al. 2010). Unmanned aerial vehicles are a similar

technological sampling platform to AUVs and have been used

to estimate terrestrial and marine animal abundances (e.g.

Hodgson, Kelly & Peel 2013; Vermeulen et al. 2013). Aerial

vehicles are often used to conduct strip transect, which is a sim-

plification of a line-transect survey (Buckland et al. 1993).

While the technology is similar to AUVs, the data produced are

often qualitatively different – the images from the AUV tran-

sect are typically not all scored for biological content and so

the data do not represent a census of the sampling area.

The aim of this article is to provide advice to researchers

about strategies for designing AUV surveys for regions with

no prior biological information, but for which prior environ-

mental data exist. Despite the AUV focus, these results should

be applicable to other image-yielding tools such as towed video

and remotely operated vehicles, as well as to similar traditional

survey designs, such as belt transects. To this end, we assess

variants of popular randomized and systematic designs under

the presence of autocorrelation for their prediction ability.

These types of designs are easy to implement, produce data

that can be multipurposed and are likely to be robust against

missed transects that arise due to extraneous circumstances in

the field. These are not always attributes of model-based

designs, which are not probabilistic and require a correct, or at

least adequate, known model on which to base a design. We

assess a series of design strategies, under the presence of a vari-

ety of levels of autocorrelation, by conducting Monte Carlo

studies (see Section Performance of Different Designs). The

amount of autocorrelation is based on that observed in a num-

ber of different taxonomic groupings, so the results of the sim-

ulation study are firmly grounded in reality. Across this diverse

set of design strategies, we demonstrate that successful designs

have common elements, which could easily be incorporated

into anyAUVfield survey.

Materials andmethods

IMAGE DATA AND ITS COLLECTION

AnAUV is a submersible robot that is deployed from a research vessel.

It traverses a pre-programmed transect before surfacing for redeploy-

ment and/or maintenance. The type of AUV considered in this study

carries a camera that captures images on a short time scale, with

sequential images having minimal spatial separation (Williams et al.

2012). Themotivating data for this studywere obtained using theAUV

‘Sirius’, see http://www.acfr.usyd.edu.au/research/projects/subsea/au-

vSIRIUS. shtml. The AUV Sirius can maintain constant height above

the seabed and thus achieve constant scale and optimal lighting for the

acquired imagery. A combination of on-board navigation tools allows

precise underwater navigation, and post-processing of imagery (Wil-

liams et al. 2012) allows further spatial precision to be given to the

acquired imagery (metre-scale precision over kilometre-scale transects).

When processing the images collected in the field, each image can be

enumerated for a number of different attributes, typically these are the

presence/absence or the abundance of a species, morphotaxa or higher-

level taxonomic groups. The choice of taxonomic detail depends on the

quality of the imagery, the habitat being targeted, the visual similarity

of the taxa sampled and the level of detail required by the research

question.

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 5, 287–297
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In this study, we utilize data obtained from the AUV Sirius while

surveying an extensive temperate reef feature surrounding the Hippo-

lyte Rocks, an offshore island group in SE Tasmania, Australia (see

Fig. 1). The reef system is composed of highly fractured dolerite and

granite, which is steeply sloping with its base in water depths of

around 90 m, and is distinct from many of the coastal reefs in the

region. The Hippolyte Rocks was surveyed in 2008–2009 using multi-

beam sonar to develop a detailed habitat map, which could be used

for subsequent mission planning. This was followed by an AUV

deployment to acquire detailed imagery to describe benthic faunal

cover and habitat distribution (Nichol et al. 2009). Six AUV tran-

sects were conducted on the Hippolyte Rocks to cover the range of

depth and other environmental gradients that may occur across this

complex topographic feature. AUV transects were approximately

2�5 km in total length and followed a ‘clustered sparse grid’ (CSG)

pattern (see Fig. 1, which has six transects). In the CSG, there is one

long central ‘subtransect’, which was oriented down the depth gradi-

ent, and four shorter subtransects oriented perpendicular to the first.

This design was used to capture the down-depth gradient, expected

to affect the distribution of biota, but also to achieve replication

across depth bands. The ‘crossing over’ in the AUV transect path

facilitated the accurate (� 1 m) georeferencing of images on the sea-

floor (Williams et al. 2010).

Autonomous underwater vehicle images were scored for the biota

with a frequency of every 100th image to reduce gross autocorrelation

from scoring the same patch of sea floor. This corresponded to an

approximate spatial separation of 30–40 m between images. Subsam-

pling images also provide a means to manage the substantial manual

effort required to score images. Preliminary analysis indicate that this

frequency was sufficient to capture the full range of habitats and envi-

ronmental gradients present in the region (N. Hill, unpublished data).

Within each image, 50 random points were scored and biota identified

to the species or morphospecies level where possible. Biota was subse-

quently aggregated to eight coarser morphotypes that reflect a spec-

trum of types. The types of morphotypes considered include dominant

habitat-forming taxa, different environmental responses and several

morphological complexities.

The physical environmental variables were derived from 2 m grids

of bathymetry and backscatter from amultibeam echo-sounder system

(Nichol et al. 2009). The covariates chosen for this analysis were

selected from the spatial products generated to describe the topo-

graphic and textural characteristics of the seafloor as determined by

Lucieer et al. (2013). These variables included depth (bathymetry), and

the mean and standard deviation of the backscatter texture as derived

from the novel segmentation procedure described in Lucieer et al.

(2013). The mean and standard deviation of the backscatter represents

the textural ‘hardness’ and ‘roughness’ of the seafloor, respectively.We

further limited our sampling frame to only consider reef substratum

using the habitat classification for this region from Lucieer et al.

(2013).

GEOSTATIST ICAL ANALYSIS

Many researchers working with AUV data ignore spatial autocorrela-

tion, or only account for it in the systematic component of the model

(by adding spatial covariates in the model). This approach is likely to

lead to deflated standard errors of the model’s parameters. Further, a

comparable geostatistical analysis can decrease the prediction variance

by incorporating the spatial dependence and the proximity of the pre-

diction to the observations. A statistical model for towed video

(a device with many of the same properties as AUV) that accounts for

autocorrelation has been presented by Foster & Bravington (2009).

This model treated the transects as linear only and assumed that dif-

ferent transects were independent. Both of these assumptions are

likely to be unsatisfactory for AUV data as individual transects are

typically not straight lines, crossover paths and are often in spatially

similar regions.

To understand the range of spatial autocorrelation and the depen-

dence on the physical covariates in the Hippolyte data, we performed a

model-based geostatistical analysis (Diggle & Ribeiro 2007) for each of

the 8 morphotypes. The nomenclature used throughout this manu-

script is applicable to any of the morphotypes, and this removes unnec-

essary and confusing notation. At spatial location i = 1…n, the

presence/absence of a morphotype, yi say, was modelled using a latent

spatial random variable, Si, and potentially as a function of the v = 1…

3 environmental covariates, {xki}. That is

logitðEðyijSiÞÞ ¼
X3
v¼1

fvðxviÞ þ Si eqn 1

where logit(�) is the standard log-odds link function. Preliminary data

exploration suggested that the parametric form of the function, fv(�), is
likely to approximated by a linear or quadratic polynomial. The latent

spatial variable Si was assumed to be Gaussian with correlation,

between locations, given by a Mat�ern function with smoothness

parameter set to m = 1 (for details of Mat�en correlation, see page 51 of

Diggle & Ribeiro 2007). The covariance between two sites is the corre-

lation between sites multiplied by a variance that is not dependent on

spatial location. The spatial variance partially quantifies the potential

impact, of the latent spatial variable Si, on the predictions of the quan-

tity of interest (yi).

Note that a substantial spatial dependence and/or variance could be

indicative of three things: (i) the morphotype naturally varies at a large

spatial scale (after covariate effects have been removed), (ii) that there
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Fig. 1. Hippolyte Island study area showing: islands (grey), image loca-

tions (blue dots) and depth in colour and contours. The depth ranged

from 13 to 90 m throughout the region. Only the locations with hard

substrate (the study area) are plotted, white areas are not in the study

area (soft substrate).

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 5, 287–297

AUV transect design 289

 2041210x, 2014, 3, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.12156, W
iley O

nline L
ibrary on [17/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



are important covariates omitted from the analysis or (iii) the covari-

ates are predicted from data that are not colocated with the AUV data

(see Foster, Shimadzu&Darnell 2012).

We performed model selection for the covariates by fitting a model

with every covariate combination where the polynomials were either

linear or quadratic. The form of the model chosen was that which had

the highest marginal log-likelihood, the log probability of the data

given only the model form. This is a well-known quantity and forms

the basis of selection statistics such as BIC (Schwarz 1978) and Bayes

factors (Kass&Raftery 1995).

Estimation of model parameters was performed by posing the geo-

statistical model’s latent spatial variable (Si) as a Gaussian Markov

random field (Lindgren, Rue & Lindstr€om 2011), which enables esti-

mation through the integrated nested Laplace approximation (INLA;

Rue, Martino & Chopin 2009 implemented in the INLA R-package,

version 0.0-1376414568). Importantly, this approach allows for poster-

ior interpretation of model parameters and predictions, just asMarkov

chainMonte Carlo methods do, but with a drastically reduced compu-

tational load. We refer to Cameletti et al. (2013) and Blangiaro et al.

(2013) for introductions to the INLA approach. We use the default

priors on all parameters.

PERFORMANCE OF DIFFERENT DESIGNS

Our focus in this article is to provide advice to field researchers about

how to survey areas that have no available biological data.We consider

variants of well-known and common designs, namely simple random

sampling, stratified (across space) random sampling, systematic sam-

pling and GRTS sampling (for generalized random tesselation strati-

fied; Stevens & Olsen 2004). The GRTS sampling strategy provides a

spatially balanced sample – one that has samples well spread through

the study region and does not have many samples in close proximity to

each other. GRTS sampling is not the only design strategy to provide

spatial balance (Robertson et al. 2013 for another recent approach),

but it is now well established in natural resource research. Our study

designs should all be feasible, up to minor departures for known geo-

graphical features. For this study region, there is a preference for tran-

sects that run north to south, like those performed in the original

survey (see Fig. 1). This is due to the expectation that transects in this

direction will cover more variation in the physical environment and

therefore also in the distribution of morphospecies. In total, we investi-

gated 13 survey designs, of which an example is given in Fig. 2. The

design types are as follows:

Random 1D: Six transects run north to south, and their locations (eas-

tings) are completely random. This is the most basic design type and is

very easy to implement.

Random 2D: Three transects run north to south, and three run east to

west. Locations are completely random. This design is a modification

ofRandom 1D that could space imagesmore effectively.

Radial Rad: The starting position of transects is randomly placed along

a line that approximates the ridge between the main islands. The direc-

tion of the transect is proportional to the distance along the ridgeline.

This gives a set of transects that run almost radially from the ridgeline.

The resulting set of transects are all approximately down slope, the pre-

ferred deployment direction for the AUV. There are twelve of these

transects, as each transect is approximately half the length of a full

north–south transect. The radial nature may enable sampling of the

shallower regionsmore effectively.

Stratified 1D: Six transects run north to south, and each transect is

randomly placed in a separate easting ‘strata’ so that transects are

likely to be well separated. The strata divide the eastings into six

non-overlapping intervals with equal area. The stratification will

spread the images throughout space more effectively than the simple

random approach.

Stratified 2D: Three transects run in both directions. The strata divide

the eastings and northings into non-overlapping intervals with equal

area. Combines the strengths of the Random 2D and the Stratified 1D

in that images should be more effectively spaced throughout the study

region.

Stratified Rad: As Radial Rad., except that the start locations of the

transects are placed in strata along the ridgeline. The strata divide the

angles into non-overlapping intervals. The stratification will place

images more evenly throughout the study area than the Random Rad.

design.

Grid 1D: Six transects run north to south and are equidistant from each

other. The first transect is randomly placed. Images are very evenly

spaced throughout the study region at the expense of randomization.

Grid 2D: Three transects run in both directions. The locations of the

first transects, in both directions, is generated by random. Images are

very evenly spaced, and there are crossovers between transects, which

may help autocorrelation estimation.

Grid Rad: AsRadial Rad., except that the start locations of all transects

are systematically placed to be equidistant. Space images evenly

throughout the study region, within the constraint of using radial tran-

sects.

GRTS 1D: Six transects run north to south. The locations of the tran-

sects are generated using the GRTS framework. Transects should be

spatially balanced, but the images will not be (they are constrained to

bewithin a transect).

GRTS 2D: Three transects run in both directions. Locations of tran-

sects, in each direction, are generated using the GRTS framework. The

placement of transects in one direction does not use information about

the locations of the transects in the other direction. Transects in each

directionwill be spatially balanced, but the images will not be.

Clustered Sparse Grid (CSG): Four transects, with pattern taken

from the original Hippolyte Rocks data, are placed in one of four

quarters of the survey area. The quarters are delineated by the mid-

points of the easting and northing of the study area. Retains the

crossover pattern that is common for AUV surveys and spreads the

transects out in space.

Status Quo: The implemented design (displayed in Fig. 1) with the

middle two transects removed. The removal is to even the number of

images in the survey region, and the middle two were chosen to leave

a set of spatially distinct transects. This decision was made in consul-

tation with the experts who originally designed the survey. The status

quo design is similar to a particular realization of the CSG design,

but it is a design with almost extreme intertransect separation. It is

not randomly chosen and represents a design that encompasses the

experts’ knowledge about the study area. Since it is not random, the

use of design-based estimates of areal quantities, such as sample

means, is not formally justified, and calculation of standard errors is

problematic at best. This is inconsequential if estimation is per-

formed using a model.

A desirable attribute of the simulation study is that it should reflect

the Hippolyte data as much as possible and only alter specific aspects

of it to test the different designs. For this reason, we restricted the num-

ber of transects to 6 formost designs as performing additional transects

requires a substantial amount of extra expensive fieldwork. The excep-

tions were (i) the radial designs, which are on average only half length

and therefore had double the number of transects and (ii) the CSG and

status quo designs that had a reduced number of transects to maintain

parity with respect to the number of images in the other designs. We

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 5, 287–297
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envisage that two radial transects could be completed in a single AUV

deployment, which is possible since one end of all transects is spatially

clustered in the middle of the sample region. Hence, the nominal num-

ber of transects for radial designs remains six. In all designs, the spacing

of the images along the transect was 37�45 m, which matches the spac-

ing in the observedHippolyte data.

All designs, except status quo, are obtained by randomly placing

transects in the study region, and, for simplicity’s sake, we ignore the

geographical features of the study area when generating the initial

design. To incorporate the geographical features, we remove generated

locations that are placed on the islands or are not over reef, see Fig. 2.

This design process introduces a variable number of images within dif-

ferent realizations of each design strategy and between design strate-

gies. This is an unfortunate but necessary source of variation in the

simulation study.

We include the GRTS designs as researchers are starting to use them

for these types of experiments, and we want to examine the usefulness

of such an approach. With small sample sizes, like the number of tran-

sects used here, we would not expect large benefits over more tradi-

tional designs. Also, the GRTS 2D design only balances over each

dimension – it does not balance over two-dimensional space. We are

currently unaware of any design algorithm that can perform this task

for anything other than point samples.

For the CSG and the status quo designs, the individual transect pat-

tern could have been chosen differently. One choice would be a pattern

with more downslope subtransects and less crossovers. We believe that

these are likely to beminor variations in the theme: images in a transect

are clustered, and transects are well separated.

Evaluation of designs

The goal in evaluating the designs is to find the design type that effi-

ciently and reliably contains the information needed tomake good pre-

dictions (see M€uller 2007 for design principles in a spatial setting). In

the situation considered in this article, we assume that the design is for

a previously unsampled location that has the required covariates mea-

sured. This is the typical situation in many, but not all, imaged-based

marine surveys. This design problem has been termed a prospective

design by Diggle & Lophaven (2006) and Diggle & Ribeiro (2007).

Note that we carry information from the previously collected data, see

Random 1D

Random 2D

Stratified 1D

Stratified 2D

Grid 1D

Grid 2D

CSG

GRTS 2D

GRTS 1D

Random Rad. Stratified Rad. Grid Rad.

Fig. 2. Example designs for the study region. Black dots are images over hard substrate and will be included in the analysis. Grey dots are those

images over soft substrate or in shallow water; they are not included in the analysis. The status quo design is omitted from this plot, but it consists of

the four outer (east–west) transects in Fig. 1.
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Section ImageData and Its Collection, into the comparative study only

through its parameter’s posterior distribution, p(h|y), and drop any

information about the spatial random variable S. This allows us to

investigate different realizations of the spatial patterns that morpho-

types may take. Our motivation for doing this is that a multipurposed

design strategymust be able to accommodate all these realizations.

Intuitively, a good design will enable the reproduction of the under-

lying spatial random variable, see SectionGeostatistical Analysis. Note

that the spatial surface is dependent on the random value of the latent

spatial variable, Si, and dependent on the model’s systematic compo-

nent
P3

k¼ 1 fkðxkiÞ. All of these terms, in addition to the parameters

defining the distribution of S, must be estimated from the hypothetical

survey data. This processmimics the analysis phase for data from a sur-

vey of an unsampled site.

The notation used from herein is y�n is the morphotype presence/

absence surface that will be predicted, y the set of observations from

the original Hippolyte data, y�d the set of hypothetical observations

from survey design d; S�
n the spatial random variable for the hypotheti-

cal sampling frame (Monte Carlo realization). In practice, y�n and S�
n

are defined on a dense grid of almost 332 000 locations, and y�d are a

subset of y�n. To evaluate a design for a particular set of hypothetical

survey data, we compare the set of posterior predictions, Eðy�njy�dÞ,
against the simulated spatial surface. For computation reasons, we pre-

dict on a thinned grid withK = 3334 locations. The thinning process is

not performed for y�d.
We evaluate the posterior predictions by summarizing each pre-

dicted surface through a small number of functions, called loss func-

tions, which quantify the discrepancy between model and simulated

data. These loss functions are similar, in spirit, to those used in Diggle

& Lophaven (2006), although we note that any loss function could be

(see usedWarren, Perez-Heydricha &Yunus 2013 for a risk-based loss

function).

1. Mean bias: Average difference between the predicted probability

of presence and the actual (simulated) probability of presence,

L1ðd; y�d; h;S�
njyÞ ¼ 1=K

PK
k¼ 1 l̂n;k � ln;k

� �
, where l̂n ¼ Êðy�njy�dÞ

and ln ¼ Eðy�njS�
nÞ from (1). This measures the design’s ability to esti-

mate an areal quantity. Systematic deviations from zero imply bias and

are undesirable property.

2. Mean prediction uncertainty: Average posterior standard deviation,

L2ðd; y�d; h;S�
njyÞ ¼ 1=K

PK
k¼ 1ðr̂kÞ, where r̂k is the estimated poster-

ior standard deviation of the location’s prediction. This measures the

modelled uncertainty in the set of predictions. Low values of

L2ðd; y�d; h;S�
njyÞ indicate less uncertainty and better predictions.

3. Worst-case bias: Maximum absolute difference between the pre-

dicted probability of presence and the actual probability of presence,

L3ðd; y�d; h;S�
njyÞ ¼ maxkf l̂n;k � ln;k

�� ��g. This measures the scale of

departure of predictions for a set of spatial locations. If the surface is

estimatedwell, thenL3ðd; y�d; h;S�
njyÞwill be small.

4. Worst-case prediction uncertainty: Maximum posterior standard

deviation, L4ðd; y�d; h;S�
njyÞ ¼ maxkfr̂kg. This measures the maximal

uncertainty for a design. Small values of L4ðd; y�d; h;S�
njyÞ indicate that

all locations’ predictions have low uncertainty.

All the summaries are functions of the random observations for the

dth design (y�d), the random spatial effects (S�
n) and the model’s parame-

ters (h). Hence, the value of the four loss functions is also random, and

a summary of its distribution needs to be inspected for inference. Here,

like elsewhere in the Bayesian design literature (Chaloner & Verdinelli

1995; M€uller 1999; Diggle & Ribeiro 2007), we summarize using the

expectation of the loss functions. The expectation is found by Monte

Carlo methods with by averaging random draws from the joint distri-

bution, viz.

LhðdjyÞ ¼ EðLhðd; y�d; h;S�
n

��yÞÞ
¼

Z
Lhðd; y�d; h;S�

n

��yÞpðy�d��S�
n; hÞpðS�

n

��hÞpðh��yÞ

dhdS�
ndy

�
d �

XB
b¼1

Lh d; y
�ðbÞ
d ; hðbÞ;S�ðbÞ

n

��y� �

p y
�ðbÞ
d

��S�ðbÞ
n ; hðbÞ

� �
p S�ðbÞ

n

��hðbÞ� �
p hðbÞ

��y� �
:

(eqn 2)

where p(�) is the probability density (or distribution) defined by its argu-
ments. Each of the B sets of samples, {h(b)}, fS�ðbÞ

n g and fy�ðbÞd g, as well
as the corresponding value of the loss function, is obtained using the

Algorithm 1. We use B = 100 in this study. The set of designs in Fig. 2

is an example a single realization of the randomized designs.

Algorithm 1.

Lemma

Simulation and summary of a singleMonte Carlo realization.

1. Draw model parameters h(b) from their posterior, p(h|y), where y is
theHippolyte data,

2. Draw spatial randomvariable S�ðbÞ
n from p

�
S�ðbÞ
n jhðbÞ�,

3. Draw the observation data y
�ðbÞ
d from p

�
y
�ðbÞ
d jS�ðbÞ

n ; hðbÞ
�
. The

locations are themselves randomized for each design (except Status

Quo).

4. Calculate the value of Lhðd; y�ðbÞd ; hðbÞ;S�ðbÞ
n jyÞ and save. Calcula-

tion of this function requires estimation of the posterior distributions,

p
�
y�n
��y�ðbÞd

�
. This is performed using the INLA method (Rue, Martino

&Chopin 2009).

Important attributes of this simulation approach are: (i) the

uncertainty in the model’s parameter values is included in the

simulation model, prediction and the loss function – we do not use

plug-in values; (ii) the predictions are made from the (posterior) pre-

dictive distribution conditional on the new data only – if the new

data do not support good estimation of model properties, then pre-

dictive abilities will suffer; and 3) the model is non-Gaussian. Most

of these issues have been visited before for Bayesian experimental

design (see M€uller 1999; Zidek, Sun & Le 2000; Diggle & Lophaven

2006; Diggle & Ribeiro 2007, but its use is not yet widespread.

Importantly, avoiding plug-in values better represents the uncer-

tainty of the whole system and an analysis on data arising from it.

The gain is the ability to assess designs using a variety of plausible

model formulations. This makes the inferences more robust to

model misspecification as the model’s uncertainty is incorporated.

The extra cost is computational, which is partially mitigated by

recent advances in computing (Rue, Martino & Chopin 2009; Lind-

gren, Rue & Lindstr€om 2011).

The first step in the Monte Carlo routine is the only place where

information from the real biological data (from the Hippolytes) are

used. This is done to cement the simulation of data sets into reality.

Without this, the parameters for the model would have to be chosen

from prior belief without knowledge from previous data. Also, only

incorporating the real biological data to inform the choice of param-

eters is consistent with our research objectives, which are to provide

advice about surveying areas with no available biological data. So,

when making predictions, we have to ignore the previous informa-

tion on the spatial random variables. Of course, there are situations

when the previous data should not be ignored, such as revisiting pre-

viously surveyed areas to obtain data that augments the current data.

This could be incorporated into (2) by conditioning all quantities on

the observed data and the latent spatial variables, as well as the new

data.

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 5, 287–297
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Results

GEOSTATIST ICAL ANALYSIS

The geostatistical analyses showed that there is substantial

variation in the way that the different morphotypes respond

to the environment, both in terms of the covariate effects

and in the properties of the latent spatial variable (Fig. 3

and Table S1 in the Supporting Information). For example,

all morphotypes responded to depth with most morphotypes

favouring water with moderate depths (approximately

55–65 m), although there is uncertainty around this prefer-

ence. The exceptions to the general depth pattern are Ecklo-

nia radiata (a kelp) and Bryozoa, which both preferred

shallow water. Ecklonia radiata is dominant in shallow

water, which is both light (enabling photosynthesis) and

more exposed to wave action (Hill et al. 2010). No morpho-

type had any relationship with the mean backscatter value,

at the scale that the multibeam echo sounder data were pro-

cessed. Recall that all of the images used in this analysis are

on hard substrate, so this result implies that the distinction

between the level of hardness within the study region is

immaterial. Two morphotypes – Gorgonians and Soft

Corals – were related to the standard deviation in backscat-

ter. Both had a higher probability of presence in locations

with variable backscatter, that is, those locations with at least

a moderate amount of seabed textual complexity (rugosity).

The amount of spatial dependence varied across morpho-

types: Crinoidea (high posterior spatial correlation with

expected correlation of � 0�3 at 1000 m separation) and cup

sponges (low posterior spatial correlation with expected corre-

lation of � 0�1 at 80 m) were the two extremes. The posterior

dependence, especially for Crinoidea, has substantial uncer-

tainty as does the posterior distributions for most of the other

parameters in the model. In spite of the uncertainty, there is

clearly evidence to suggest that assuming that the images are

independent is likely to be misleading, as the average interim-

age distance is only 33�45 m. The amount of spatial variance

also varied from substantial (Ecklonia radiata) to inconsequen-

tial (cup sponges).

SIMULATION STUDY RESULTS

Wepresent only the results for the simulation based on the Soft

Coral morphotype and for the first two loss functions, for the

sake of brevity, given in Fig. 4. The remaining simulations

based on the other seven morphotypes follow the same general

patterns, withminor differences. The complete results are given

in the Supporting information.

The mean bias summaries (L1ðdjyÞ) indicate that all

design strategies will over predict (predictions are higher

than they should be). The amount of bias is not constant

over the different design types. The bias ranges from
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Fig. 3. Posterior summaries of autocorrelation (Mat�ern) function. Solid line is the marginal posterior expectation, and shading corresponds to the

60th, 80th, 90th, 95th and 99th quantiles of the posterior distribution. The spatial variance estimates are themean of themarginal posteriors.
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substantial (CSG and Random 1D) to negligible (status

quo). The worst-case bias summaries (L3ðdjyÞ) show a simi-

lar pattern to the mean bias. Note that the absolute bias is

bounded to [0,1] as it is a prediction of a probability. Given

this, the worst-case bias is large – it occurs when the predic-

tion is almost the opposite of truth. In general, the one-

dimensional designs give high mean bias and high worst-case

bias, while the designs with more systematic structure (two-

dimensional, radial and Status Quo) show less bias. The

exception is the CSG design, which performed similarly to

Random 1D.

The designs also delineate with respect to mean prediction

uncertainty, L2ðdjyÞ, although the practical difference may be

immaterial. In general, the two-dimensional designs performed

better than the one-dimensional designs. The worst-case pre-

diction uncertainty,L4ðdjyÞ, provides some further discrimina-

tion to the mean prediction uncertainty. When simulations for

all morphotypes are considered, L4ðdjyÞ additionally suggests

that the more systematically structured randomizations per-

form better – in particular, the grid and stratified designs per-

form better than completely random. The GRTS 2D

randomization produces an equivalently low-level maximal

uncertainty (measured by L4ðdjyÞ) to stratified and gridded

designs.

The method to generate designs had the unfortunate but

necessary side effect of varying the number of images for

different realizations of designs and for different designs. The

average number of images per design and per species is given in

the Supporting information. The designs with the highest num-

bers of images were status quo, CSG and the two-dimensional

designs. To investigate the possibility that the differences we

saw were from this side effect rather than from the different

design strategies, we looked to see whether there was any rela-

tionship between the loss functions and the number of images.

This was done by regressing the loss functions against the

design strategies average number of images. For the average

bias, L1ðdjyÞ, and the average prediction uncertainty, L2ðdjyÞ,
we found there was a very slight negative trend – the designs

with more images had less bias and predicted better. However,

none of the relationships had a significant slope. The slight

negative trend was also seen in the worst-case loss functions.

However, for these functions, the relationship was significant.

If the uncertainty in the average number of predictions and the

average loss functionwere accounted for in the regression, then

the evidence for the relationship would be further diminished.

Discussion

The analyses of the data from the Hippolyte Rocks suggest

that for some morphotypes, at least, there is a strong spatial

effect (see Section Geostatistical Analysis). Intuitively, this

autocorrelation will have implications about how future

designs are conducted as it matters where the sampling loca-

tions are, with respect to each other. The simulation study in

A
ve

ra
ge

 d
ev

ia
tio

n

0·
00

0·
04

0·
08

0·
12

0·
08

5
0·

09
5

A
ve

ra
ge

 S
D

Ran. GRTS Strat. Grid Ran. Strat. Grid Ran. GRTS Strat. Grid CSG S. Quo

1 Dimensional Radial 2 Dimensional

Fig. 4. Results for the simulation based on the Soft Coral morphotype. The points are the expected values of the loss functions for average bias
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expected values. The expectations and confidence intervals are for the 100 simulation replicates. Values near zero forL1ðdjyÞ indicate low bias. Smal-
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Section Performance of Different Designs confirms this intui-

tion by showing that different design strategies contain quite

different levels of information in terms of the quality of areal

and point predictions. Our results suggest that those designs

with greater spatial balance, as might be introduced by includ-

ing stratification or other systematic components, tend to pro-

videmore information for estimation.

It is commonly considered that designs for prediction (not

estimation) should be space filling giving more or less uniform

spatial distributions (Royle &Nychka 1998 give some justifica-

tion). On the other hand, designs that account for the uncer-

tainty from not knowing parameter values, which have to be

estimated from the data, should be less regular (Diggle & Lop-

haven 2006; Diggle & Ribeiro 2007) and contain some loca-

tions that are spatially near others. In fact, design-optimality

criteria are antithetic for these two objectives (Zimmerman

2006), which has lead to compound criteria (Zimmerman

2006; M€uller & Stehlı´k 2010). The addition of the spatially

close locations is thought to aid estimation of the spatial

dependence, especially for morphotypes with short spatial

dependence (see Lark 2002). In the context of AUVdesign, it is

not immediately clear what implications these principles will

have. In an AUV survey, the images within an AUV transect

are spatially similar while between transects they are typically

spatially separate.

Clarity around this AUV-specific quandary is given by the

simulation study, Section Performance of Different Designs.

Designs with more transect-to-transect spatial separation per-

form better, on the whole, than designs with little or no struc-

ture. Care should be taken to remember that images within

these transects are generally close relative to the distance of

images between transects. The CSG design type is, in many

ways, the extreme of this principle and shows that it is possible

to ‘over-cluster’ within transect images. CSG transects, sepa-

rated using stratification, could still be too compact to provide

adequate information for model estimation and prediction.

However, even this design type can produce good designs – the

status quo is one such design and its success could be attribut-

able to a good design for the systematic part of the model. It is

possible that particular designs from other design strategies

could perform even better.

A key point of the simulation study in Section Performance

of Different Designs is that the status quo design is successful

with respect to the other design strategies. The status quo

design is based on experts synthesis of prior knowledge (formal

and informal) of the region, which incorporated information

on how environmental gradients affect biological assemblages

in the study region. The status quo design exhibited the follow-

ing qualities:

1. It has good coverage of important covariates (such as

depth). The distribution of depth is different for the status quo

design compared to the other designs, on average (Fig. 5). In

particular, there are more deep images, although the difference

is modest.

2. It has (almost) maximal separation between transects with

clustered observations within transects. The distribution of

image-to-image separations is different for the status quo

design (Fig. 5). The status quo design has more large separa-

tions, fewer moderate separations and a reasonable number of

short separations (the CSG design has more short separa-

tions).

While these are factual observations, it is important to note

that the good performance of the status quo design could have

occurred by chance. A good design can still be generated from

a design strategy that is, on average, poor. The process used to

generate the status quo design required a priori knowledge of

which environmental gradients influence assemblages, and the

transects were arranged to achieve this. Even sampling of envi-
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© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 5, 287–297

AUV transect design 295

 2041210x, 2014, 3, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.12156, W
iley O

nline L
ibrary on [17/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ronmental gradients has previously been shown to be a benefi-

cial strategy (Hirzel &Guisan 2002). For theHippolyte Islands

region, this strategy requires knowledge of relatively few

environmental gradients and primarily requires knowledge of

depth, which is strongly associated with other important

gradients.

Our study only considers a single data set, and immediate

generalizations to all data sets should not be made, although

conclusions are robust across the five morphospecies

considered. However, it is possible to hypothesize about the

consequence of altering the designs considered and the amount

of information available for the design process. If the research-

ers were able to conduct more transects, giving more images,

then we would expect that the amount of bias and the predic-

tion uncertainty would decrease. This reduction is a natural

consequence of incorporating more information into the

analysis and making predictions given set of observations with

better spatial coverage. If more images were scored, on the

same number of transects, then it is likely that the autocorrela-

tion will be better estimated, at least for small separations. Bet-

ter estimates of autocorrelation will reduce the uncertainty in

the model and so a deduction in prediction variance will also

be obtained. However, we strongly suspect that performing

more transects will reduce uncertainty by a much greater

amount than scoring more images. This is because many pre-

diction locations will still be far from the observed locations,

and the benefit of having a more precise autocorrelation func-

tion is subsequently not important.

The model-based estimators that we use in this paper allow

flexibility in design as it was immaterial how the sites were cho-

sen, provided they contain enough information about the envi-

ronmental gradients and other terms in the model and design.

This should be contrasted with sampling-based estimators,

which do require explicit knowledge of the design. In fact,

design-based estimators for AUV surveys are not straightfor-

ward to derive, as randomization is restricted through the

necessity to perform transects from which images are sampled.

Importantly, simple averages of the data (and their standard

errors) will have undesirable properties as these data are not

independent, and the average will not reflect important covari-

ates.

There are some aspects of the results from the simulation

study that are concerning. Chief amongst these is the propen-

sity for all design types (excepting the single status quo design)

to overestimate the probability of observing the morphotypes

(positive expected bias termL1ðdjyÞ). We suspect that this bias

is largely due to very slight overprediction for numerous loca-

tions spatially removed from an observed location, especially

those that are in deep water. There are two remedies for this

problem: (i) increase the spatial coverage of the design so that

prediction points are close to image locations and (ii) try to

ensure that the design provides a good estimate for the system-

atic part of the model. The evidence for the first point is given

by the slight reduction in the severity in the loss functions with

increasing numbers of images (see Supporting information).

The status quo design has a large number of images and has a

higher proportion of them in deeper water (Fig. 5). These qual-

ities imply that the locations of the prediction points are likely

to be relatively close and that coverage of depth is more even –

both are likely contributors to status quo’s success. Note that

just increasing the number of points will not guarantee a good

design, this is the case with the CSG strategy which had a

similar number of images to the status quo strategy.

The method for performing the assessment of the different

design strategies is enabled by recent advances in statistical

computing for geostatistical models (Rue, Martino & Chopin

2009; Lindgren, Rue & Lindstr€om 2011). The approach

enables a design to be tested for all aspects of the analysis phase

(estimation and prediction), not just the prediction step. Tradi-

tionally, this has not been possible due to the excessive compu-

tational load. Our approach also accounts for parameter

uncertainty in the model by simulating data sets from their

posterior distribution. This avoids the requirement that data

sets are to be generated using the same set of parameter values.

The results, from our approach, will be more robust to a wide

variety of plausible parameter values (e.g.M€uller 1999).

We conclude by providing some concrete guidance to

researchers about which design to use in future. If there is little

or no prior information about the distribution of environmen-

tal covariates, then we feel that researchers should use a struc-

tured two-dimensional design (gridded, stratified, or GRTS

but not completely random). In these situations, it is advisable

to avoid any one-dimensional design or a CSG design. If there

is previous information about the physical environment of the

study area, then it should be used in the design if possible. The

question is how? We believe that it should be done formally

using well-defined principles such as randomization and strati-

fication, or model-based design approaches. Without this, a

design is constructed by intuition or ad-hoc methods (at best),

which can be a risky strategy.
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