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1  | INTRODUC TION

The methodological gold standard in ecology, as in many scientific 
disciplines, is the randomized control trial, also known as the con‐
trol–impact experiment. The random assignment of subjects (or 
sites) into treatment (or impact) and control groups with pre‐de‐
termined treatment levels has been used to uncover innumerable 
fundamental findings in ecology. For example, common garden 

experiments seek to compare the effect of a fixed treatment (fertil‐
izer supplements, fungal inoculations, predator exclusions, genetic 
strains) using two or more groups that are otherwise exposed to 
the same environmental conditions. Since we cannot observe the 
exact same site both treated and not treated simultaneously, we 
must compare between sites to identify the effect of treatment. The 
key to valid comparison is to assign treatments to sites at random. 
In such randomized experiments, only the treatment should differ 

 

Received: 25 September 2018  |  Accepted: 29 March 2019

DOI: 10.1111/2041-210X.13190  

R E V I E W

Causal analysis in control–impact ecological studies with 
observational data

Ashley E. Larsen1  |   Kyle Meng1,2 |   Bruce E. Kendall1

1Bren School of Environmental Science & 
Management, University of California, Santa 
Barbara, California
2Department of Economics, University of 
California, Santa Barbara, California

Correspondence
Ashley E. Larsen
Email: larsen@bren.ucsb.edu

Handling Editor: Robert B. O'Hara

Abstract
1.	 Randomized experiments have long been the gold standard in determining causal 

effects in ecological control–impact studies. However, it may be difficult to ad‐
dress many ecologically and policy‐relevant control–impact questions‐such as the 
effect of forest fragmentation or protected areas on biodiversity through experi‐
mental manipulation due to scale, costs and ethical considerations. Yet, ecologists 
may still draw causal insights in observational control–impact settings by exploit‐
ing research designs that approximate the experimental ideal.

2.	 Here, we review the challenges of making causal inference in non‐experimental 
control–impact scenarios as well as a suite of statistical tools specifically designed 
to overcome such challenges. These tools are widely used in fields where experi‐
mental research is more limited (i.e., medicine, economics), and could be applied 
by ecologists across numerous sub‐disciplines.

3.	 Using hypothetical examples, we discuss why bias is likely to plague observational 
control–impact studies in ways that do not surface with experimental manipula‐
tions, why bias is generally the barrier to causal inference, and different methods 
to overcome this bias.

4.	 Satellite‐, survey‐ and citizen–science data hold great potential for advancing key 
questions in ecology that would otherwise be prohibitive to pursue experimen‐
tally. However, to harness such data to understand causal impacts of land, en‐
vironmental and policy changes, we must expand our toolset such that we can 
improve inference and more confidently advance ecological understanding and 
science‐informed policy.
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systematically between treatment subjects and control subjects; 
this allows researchers to interpret the average difference between 
treatment and control groups as the average causal effect of treat‐
ment at the population‐level.

Ecologists are increasingly interested in taking advantage of 
survey, remote‐sensing and citizen‐science data to address ecologi‐
cally and policy‐relevant questions in systems that do not easily lend 
themselves to experimental manipulation. For example, the place‐
ment of protected areas is rarely under the control of the researcher 
and they are generally not randomly placed on a landscape. In such 
cases, how can one identify the causal effect of protected areas on 
the abundance of, say, an economically or ecologically important 
species? To do so, the researcher must overcome the fundamental 
challenge present in non‐experimental settings: the inability of re‐
searchers to have full control over treatment assignment (i.e. pro‐
tected and not protected sites), which opens up the possibility that 
the outside forces that influence observed treatment are doing so in 
a non‐random manner. Naively applying regression, ANOVA or other 
statistical approaches without accounting for the non‐experimental 
nature of observational data can lead to inappropriate conclusions 
due to overlooked bias from improper comparisons between areas 
chosen and not chosen for treatment. In other words, the common 
mantra of ‘correlation does not imply causation’ applies. However, 
not all is lost. Ecologists can establish causal inference with observa‐
tional data in a control–impact framework if we incorporate careful 
research design and rigorous statistical approaches expressly de‐
signed for the purpose.

Here, we discuss the challenge and promise of inferring causality 
from non‐experimental data in control–impacts studies. We begin 
by discussing frameworks for causal inference. We then expand on 
the nature of why observational data present specific challenges not 
encountered in randomized experiments, which provides paths for‐
ward. To that end, we review several statistical approaches often 
associated with econometrics that can potentially overcome bias in 
control–impact analyses with observational data. To the extent pos‐
sible, we seek to build intuition rather than to delve into the tech‐
nical details. We use hypothetical examples to do so, since few real 
datasets are amenable to all methods discussed and the true popula‐
tion parameter is indiscernible in real data.

2  | FR AME WORKS OF C AUSAL INFERENCE

In control–impact studies, causal inference is achieved through ex‐
plicit comparison across units that are treated and units that serve as 
controls. In such settings, the key concept is that of a counterfactual: 
what would outcomes for the treated units look like in the absence 
of the treatment? If control units differ from treated units in the ab‐
sence of the treatment, then a causal interpretation is not feasible.

There are several different frameworks for conceptualizing 
causal relationships in order to facilitate causal inference. Two of 
the most well‐known are Pearl's structural causal model (SCM; 
Pearl, 2000, 2010) and Rubin's potential outcomes model (PO; 

Rubin, 2005). SCM is a powerful framework for assessing causal 
relationships between variables. It integrates nonlinear struc‐
tural equation modelling (SEM), graphical representation of causal 
pathways and potential outcomes analysis (Pearl, 2010). SEM, first 
developed in the early decades of the 20th century (Wright, 1921), 
has been used in ecological systems to generate and test com‐
plex hypotheses about direct and indirect species interactions and 
system processes (Grace, Anderson, Olff, & Scheiner, 2010; Fan, 
2016 ). SCM extended SEM to more flexible distributional assump‐
tions, and links the equations embodied in the causal diagram (or 
directed acyclic graph, DAG) to the concept of counterfactuals.

In contrast, the PO framework is based on a notion of causal‐
ity which places an emphasis on what researchers can and cannot 
observe, and an emphasis on isolating the effect of usually a single 
explanatory variable of interest (i.e. treatment variable) on a single 
outcome rather than on disentangling complex relationships within 
a network. Thus, PO is a particularly amenable framework for 
conceptualizing randomized and non‐randomized control–impact 
studies. A specific insight illustrated by the PO framework is that 
causal interpretations are stymied by the fundamental truth that 
a subject cannot be both treated and not treated simultaneously 
(Holland, 1986). As we will see below, randomization allows for the 
estimation of an average treatment effect in the population, while 
the absence of randomization requires additional understanding of 
the data‐generating mechanism to develop a credible comparison. 
While part of the richness of SCM is the development of a new 
mathematical language describing causal relationships without 
reliance on probability math, it is not our goal to summarize this 
for ecologists. We point the interested reader to Pearl (2010). Our 
goals are to first illustrate why statistical bias presents a particular 
challenge for observational studies and then introduce some prac‐
tical tools from econometrics to improve causal inference in obser‐
vational control–impact studies. As such, we build on the potential 
outcomes framework as a simple way to relate to ecology's foun‐
dations in randomized experiments. Nonetheless, bias can also be 
described using the mathematical and graphical representations of 
SCM, which we include in our illustrations. Finally, we emphasize 
that by employing the specific control–impact notion of causality, 
this review will not cover the notion of causality found in coupled 
dynamical systems, such as those pertaining to models of coupled 
predator–prey interactions. That notion of causality, sometimes 
referred to as ‘Granger’ causality (Granger, 1969) in time‐series 
econometrics and recently advanced for nonlinear dynamical set‐
tings (Sugihara et al., 2012), examines how several interacting time 
series variables may be coupled over time. Because our aim is to 
inform research in control–impact studies, this review will exclude 
this dynamical notion of causality.

3  | POTENTIAL OUTCOMES FR AME WORK

To be concrete, take for example, a study that is interested in esti‐
mating the effect of forest thinning (e.g. through US Forest Service 
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Collaborative Forest Landscape Restoration Program) on songbird 
abundance. Which forest stands are chosen for thinning treatment 
is not under the manipulation of the researcher where treatment 
and control sites could be assigned randomly at precisely known 
levels of treatment. Rather, as is common with observational data, 
the decision of where to thin is likely determined by a tangle of pos‐
sibly unknown or unobserved environmental (e.g. climate, soil), so‐
cial (e.g. land values) and policy factors that cannot be manipulated 
by the researcher. As such, here and throughout, we model the 
treatment as a random, rather than fixed, variable. The implication 
of this distinction will become clear later on (see Section 6 below).

The US Forest Service's priorities often include improving eco‐
system function and reducing fire risk, and thus we can imagine 
that more degraded sites or sites closer to human habitation are 
more likely to be given resources than intact forests far from the 
Wildland–Urban Interface. In that case, a survey of songbird abun‐
dance across thinned and unthinned sites is likely to find lower mean 
songbird abundance in thinned sites. A similar result might occur if 
there were different levels of thinning treatments based on prox‐
imity to surrounding development or fire risk. In both scenarios, we 
would be remiss to conclude that thinning reduces songbird abun‐
dance based on a simple comparison of means because sites chosen 
for treatment (or sites chosen for higher levels of treatment) differed 
systematically from those not chosen (or those chosen for lower 
levels of treatment). This systematic difference between the sites 
assigned treatment (or different treatment levels) results in inaccu‐
rate estimation of the effect of treatment. More formally, the mean 
or expected value of the estimated effect of the treatment, E[𝛽], is 
different from the true value, β. This is known as statistical bias. The 
challenge is therefore overcoming bias stemming from non‐random 
treatment assignment so we can isolate the effect of the treatment 
on bird abundance.

For simplicity, we start by formalizing the above scenario with 
a binary treatment (thinned, unthinned forest stands). For any site, 
there are two outcomes that can potentially be observed—songbird 
abundance if the site was selected for the thinning treatment and 
songbird abundance if the site was not selected for the thinning 
treatment. Formally,

where Y0i is songbird abundance in site i had that site not been chosen for 
treatment 

(

Ti = 0
)

, and Y1i is songbird abundance in site i had it been cho‐
sen 

(

Ti = 1
)

 (The formal notation for potential outcomes was introduced 
by Neyman (1923, translated and reprinted in 1990) in the context of 
randomized experiments. It wasn't until the work of Rubin (1974) that the 
potential outcomes framework was considered for observational data 
settings. The term ‘Rubin Causal Model’ first appears in Holland (1986)). 
The observed outcome Yi can be related to the potential outcomes by,

The causal effect of thinning for site i is Y1i−Y0i. For many empirical 
applications, the question of interest, or estimand, is the population 

average treatment effect (ATE). Let E[ ] represent the expectation 
operator, or the population mean of a random variable. By the law of 
large numbers, the sample mean converges to the population mean 
so E[ ] can also be thought of as the sample average in very large 
samples. The ATE can be written as

where N is the population size. β is the causal effect we would like 
to be able to estimate if it were possible to observe, for every site i, 
its outcome both when it is thinned (Y1i) and when it is not thinned 
(Y0i). Since this is impossible, we must learn about the effect of forest 
thinning through comparisons across untreated units that can serve 
as valid counterfactuals.

If we took the simple observed differences in mean songbird 
abundance between treated and untreated sites, we may capture 
more than we intended. The simple difference in means between 
sites that were and were not treated is equivalent to

The first composite term on the right‐hand side of Equation 4 rep‐
resents the average effect of treatment on sites that were thinned 
(‘average treatment on the treated’, ATT). The second term captures 
the systematic difference between sites that are and are not treated 
in the absence of treatment (e.g., if the thinning programme was 
cancelled after site selection but before thinning occurred, would 
average bird abundance differ between selected and not selected 
sites?). Thus, the second term captures the ‘selection’ bias stemming 
from non‐random treatment assignment. Selection bias would arise 
if sites chosen for thinning were less isolated or otherwise in less 
pristine condition than sites not chosen. In that situation the esti‐
mated effect of thinning would capture both the true effect of the 
thinning treatment on bird abundance and the pre‐treatment differ‐
ence in site quality. Quasi‐experimental approaches including BACI 
designs seek to remove selection bias so we can isolate the causal 
effect of the treatment from observed differences in outcomes be‐
tween treatment and control groups.

3.1 | A key assumption

Regardless of whether treatment is randomly assigned, deriving 
causal inference based on counterfactuals invokes the assumption 
that there is no treatment spillover or interference between sites. 
This is known as the stable unit treatment value assumption (SUTVA; 
Rubin, 1980, 2005). SUTVA also assumes there are not different ver‐
sions of the same treatment. This would be violated if, for example, 
some sites are only treated on paper, but action never happens on 
the ground.

(1)Potential outcome=

{

Y1i if Ti=1

Y0i if Ti=0,

(2)Yi=Y0i+ (Y1i−Y0i)Ti.

(3)�=E
[

Y1i
]

−E
[

Y0i
]

=

(

1

N

) N
∑

i=1

(

Y1i−Y0i
)

,

(4)

E
[

Yi|Ti=1
]

−E
[

Yi|Ti=0
]

= E
[

Y1i|Ti=1
]

−E
[

Y0i|Ti=0
]

= E
[

Y1i|Ti=1
]

−E
[

Y0i|Ti=1
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Average treatment effect on the treated (ATT)

+ E
[

Y0i|Ti=1
]

−E
[

Y0i|Ti=0
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Selection bias

.
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Stable unit treatment value assumption is required for potential 
outcomes to be well defined and is built into the potential outcomes 
definition in Equation  1. However, one can envision conditions in 
ecological systems that violate SUTVA. For example, if population 
growth in a non‐treated site is so high that there is net dispersal 
away from the site and into a treatment site, there would be treat‐
ment spillover, which would obfuscate the effect of the treatment 
alone. Treatment spillover would generally occur with spatial de‐
pendence between outcomes, where treatment of one site caused 
higher abundance at a nearby site. However, spatial correlation of 
the standard errors (a common feature of ecological data) would not 
violate SUTVA.

At first glance, SUTVA seems overly restrictive. However, 
studies can often be designed such that SUTVA is reasonable. 
For example, researchers can aggregate to larger units (e.g. indi‐
vidual to population, patch to landscape; Imbens & Wooldridge, 
2009). Lack of interference between observations underlies 
many statistical analyses trying to ascertain treatment effects 
in randomized trials as well as observation studies. If one is to 
relax SUTVA, additional information is needed to specify the 
exact extent and intensity of interactions across individuals (e.g. 
Deschenes & Meng, 2018). This is an active area of research (e.g. 
Manski, 2013).

4  | R ANDOMIZED E XPERIMENTS

If we are willing to make the SUTVA, causal inference becomes 
a problem associated with assignment of treatment. If treatment 
status, Ti, is independent of potential outcomes as it theoretically 
would be in a random experiment, the second composite term of 
Equation  4 drops out since E

[

Y0i|Ti = 0
]

= E
[

Y0i|Ti = 1
]

. Further, 
the conditional expectation simplifies to the unconditional expec‐
tation in the first term, E

[

Y1i|Ti = 1
]

−E
[

Y0i|Ti = 1
]

= E
[

Y1i
]

−E
[

Y0i
]

 
because potential outcomes are independent of treatment sta‐
tus (Y1i, Y0i ⊥ Ti, where ⊥ denotes statistical independence). Thus, 
the simple difference in population means, the left‐hand side of 
Equation 4, is equal to ATE, Equation 3, if treatment status is ran‐
domly assigned. This highlights why experimental manipulations 
are the gold standard for causal inference. Replacing the popula‐
tion means with the corresponding sample analogs results in a con‐
sistent estimate of the ATE.

In observational analyses, we must remove selection bias asso‐
ciated with non‐random assignment of treatment as bias precludes 
the identification of causal relationships. How we do so depends on 
what we know about how treatment is assigned and whether we can 
observe relevant covariates that determine treatment assignment. 
Below we transition from potential outcomes to regression, and 
from there to different regression‐based methods for deriving cau‐
sality for treatment selection based on observable and unobservable 
characteristics. See Supporting Information for example code and 
Table 1 for a summary of data requirements and key assumptions 
for each method.

5  | REGRESSION ANALYSIS

Equation  2 can be rewritten in terms of a regression model. To 
build intuition in the most straightforward manner, we omit co‐
variates for now. For simplicity, we also assume that treated sites 
respond the same way to thinning (i.e. constant treatment effects) 
and the model is linear in parameters. In this case, we can write 
Equation 2 as,

where � = E
[

Y0i
]

, β = Y1i − Y0i is the treatment effect, and ɛi is the site‐
specific random error term.

Evaluating Equation 5 for treated and untreated sites yields,

This illustrates that the bias that prevents us from isolating the 
causal effect (β) from the simple difference in the treatment and 
control sites (E

[

Yi|Ti = 1
]

−E
[

Yi|Ti = 0
]

) stems from a correlation 
of the treatment with the error term. In other words, if the site‐
specific, random error term were not related to treatment status, 
E
[

�i|Ti = 1
]

= E
[

�i|Ti = 0
]

, the average treatment effect, β, is all that 
remains. Though we used the population regression for ease of il‐
lustration, by the law of large numbers, the sample regression co‐
efficients are a consistent estimate of the population coefficients.

6  | TRE ATMENT A S A R ANDOM VARIABLE

It is worth noting that throughout, we have been considering the 
treatment as a random, rather than a fixed, variable. This distinction, 
which is less essential in the context of randomized experiments, is 
the basis for why bias may arise in observational data settings.

In theory, a randomized experiment enables the researcher to 
fully manipulate which units are assigned to treatment or control, 
and for non‐binary treatments, to determine the specific levels of 
treatment. The ability to fully manipulate treatment means that the 
researcher may be willing to assume, as Sokal and Rohlf (2012) de‐
scribe in their seminal Biometry text (p. 475), ‘the independent vari‐
able X is measured without error. We therefore say that the X's are 
‘fixed’, which means that whereas the dependent variable Y is a ran‐
dom variable, X does not vary at random, but rather is under the con‐
trol of the investigator’. If X is assumed to be fixed, the correlation 
between the treatment variable and the error that we have been dis‐
cussing at length is zero, by assumption (Mathematically, this stems 
from the ‘exogeneity assumption’ required for unbiased estimators. 
Exogeneity implies zero correlation between the treatment and the 
true model error, E

[

Ti�i
]

= 0. If treatment is considered fixed, it can 
be removed from the expectation such that E

[

Ti�i
]

= Ti × E
[

�i
]

. Since 
the latter term equals zero by assumption, assuming treatment is 
fixed implicitly assumes away any potential correlation between the 

(5)Yi=�+�Ti+�i,

(6)
E
[

Yi|Ti=1
]

−E
[

Yi|Ti=0
]

=

(

�+�+E
[

�i|Ti=1
])

−

(

�+E
[

�i|Ti=0
])

(7)=�+E
[

�i|Ti=1
]

−E
[

�i|Ti=0
]
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TA B L E  1   Data requirements and key assumptions of different methodology discussed

Method Addresses Situation Data requirements Key assumptions

Difference‐in‐differ‐
ence

Selection bias stemming from which group gets 
treatment

Time trends and group‐specific aver‐
ages differ between treatment and 
control groups

At least two periods of data, before and 
after, observed for both a treatment and 
control group

Parallel time trends between 
the treatment and control 
group prior to treatment

Within‐estimator Selection bias stemming from unobserved or 
not included variables that are correlated with 
the covariate of interest and the outcome

Time shocks shared by all observa‐
tions (time dummies), time‐invariant 
characteristics unique to individual 
observations or groups (individual, 
group dummies)

Panel data where covariates of interest and 
outcome variable vary over time and/or 
within individuals (i.e. within the dummy 
variable group(s))

Strict exogeneity

Instrumental 
variables

Reverse causality. Can also be used to address 
other endogeneity bias

There exists a feedback between the 
magnitude of outcome variable and 
the treatment variable

Requires an ‘instrumental’ variable that is 
correlated with the endogeneously deter‐
mined treatment variable, but otherwise 
does not drive the outcome

Instrument is ‘relevant’ (i.e. 
correlated with endogeneous 
variable) and uncorrelated with 
the errors

Propensity scores Selection bias, if selection is determined by 
observable characteristics

Reduces the high dimensionality prob‐
lem associated with including all vari‐
ables that could determine treatment 
vs control status

Data on variables that determine selection 
into treatment and control groups

Treatment ignorability as‐
sumption. Common support 
between treatment and 
control groups. Additional as‐
sumptions depending on how 
p‐scores are used

Regression 
discontinuity

Selection bias Discrete treatment assignment as a 
function of some threshold in a ‘forc‐
ing’ variable

Because treatment is assumed to be as good 
as random only near the threshold, there 
needs to be sufficient mass of data within 
narrow bandwidths of the forcing variable 
on either side of the threshold

Assignment of treatment is as 
good as random across the 
threshold of the forcing vari‐
able. Units are unable to sort 
across the threshold
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explanatory variables and the error term, and thus the possibility of 
many forms of statistical bias). This point is not often emphasized 
because in a perfectly executed randomized experiment, treatment 
(as a random variable) is uncorrelated with the errors anyway. Of 
course, in practice, assuming X is obtained without error may not 
hold due to naturally occurring variation, and randomization may 
not inherently provide bias‐free estimates if randomization is incom‐
plete (e.g. due to unknown individual variation in study units).

Yet, in observational data there is a clear distinction with re‐
gard to the treatment variable. By definition, treatment (e.g. loca‐
tion and extent of deforestation, protected areas, hunting pressure 
etc.) is determined by ‘outside’ and potentially unknown forces that 
are beyond a researcher's control. Treating explanatory variables 
as random variables acknowledges the possibility of a correlation 
between the treatment variable and the unmodelled determinants 
of the outcome (i.e. model errors), and thus various sources of bias 
that preclude causal interpretations of correlations. We next discuss 
these sources of bias before turning to various research designs that 
potentially enable causal inference with observational data.

7  | SOURCES OF BIA S

Bias implies that the expected value of the sample estimator does 
not reflect the true population parameter E

[

𝛽
]

≠ 𝛽, (Figure  1a). 
While the correlation between the hypothetical model errors and 
treatment (E

[

Ti�i
]

≠ 0) is broadly referred to as endogeneity bias, 
there are a couple of specific scenarios that are widely observed in 
observational studies.

Any covariate that is excluded from the model ends up in the 
error term. Thus, any variable that is correlated with the treatment 
and drives the outcome would result in a correlation between the 
errors and the treatment if not explicitly included in the model. For 
example, if forest stand age was correlated with the treatment (e.g. 
thinning) and bird abundance (e.g. through habitat availability), omit‐
ting forest age as a covariate would induce a correlation between 
the errors and the treatment and result in a biased estimator of the 
effect of thinning on bird abundance due to the selection bias prob‐
lem illustrated earlier (which is also referred to as omitted variable 
bias and can be illustrated via a DAG, Figure 2). This contrasts with 
variables that drive the outcome but are not correlated with the 
treatment. Failing to control for these variables adds noise (i.e. in‐
creases the standard error of the parameter estimate) but does bias 
regression coefficients.

The second major source of endogeneity bias occurs when there 
is a feedback between the outcome variable back to explanatory 
variables, known as reverse causality. In other words, if thinned sites 
were chosen to avoid areas with high bird abundance, then abun‐
dance drives thinning and thinning drives abundance. In this case, it 
is impossible to estimate either directional relationship without ad‐
dressing the feedback because of the induced correlation between 
the errors and the treatment going in either direction (bird abun‐
dance → thinning, thinning → bird abundance).

Lastly, a persistent challenge for observational studies is the 
presence of measurement error in the explanatory variables. While 
measurement error of the outcome variable results in noise, it does 
not cause bias unless the measurement error is correlated with 
the explanatory variables. In contrast, measurement error in the 

F I G U R E  1   Properties of Linear Estimators. The desirable properties of linear estimators are that the estimator is unbiased (a,1), 
consistent (b) and efficient (c,2). Unbiasedness is a finite sample property. An estimator is unbiased, if the average (or expected value) of the 
sampling distribution is equal to the true parameter value (a,1). If there is a correlation between the model errors and treatment variables, 
the estimator will generally be biased (a,2). Consistency, like unbiasedness, is related to identification of the true relationship (i.e. the 
frequency distribution of estimated coefficients is centred on the true value, β). However, consistency is an asymptotic property. We focus 
on unbiasedness, which is most relevant to finite samples, however, instrumental variables, due to its two step process, is a consistent but 
biased estimator. Efficiency is related to the spread of the distribution of the estimator. An efficient estimator has the minimum variance of 
all estimators in its class of estimators (e.g. linear estimators)
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explanatory variables causes what is known as classical errors‐in‐
variables, which biases the slope estimates towards zero.

8  | METHODOLOGIC AL APPROACHES

This section details five empirical approaches that, under different 
statistical assumptions, enable causal interpretations when examin‐
ing observational data.

8.1 | Difference‐in‐difference (DiD)

In the absence of experimental manipulation, it is difficult to parse 
apart the effect of the treatment from background changes in 
environmental conditions. Luckily, many survey data sources are 
collected over multiple years. When ‘panel’ (or ‘longitudinal’) data 
are available, the analyst can sometimes leverage repeated obser‐
vations over time to address bias due to omitted, time invariant 
confounders.

Like BACI paired (Stewart‐Oaten, Murdoch, & Parker, 1986), DiD 
is a paired design where treatment and control sites are observed 
at the same time before and after the treatment occurs (Angrist & 
Pischke, 2009). We introduce the basic DiD despite its similarities to 
BACI to introduce readers to another methodological literature and 
as an entryway to the panel data models discussed below.

With repeated observations of the same groups over time a DiD 
is estimated using the below model,

where i denotes an individual observation, g denotes group, and t 
denotes the time period. Here ‘treat’ is a dummy variable that is 
equal to one for sites that eventually received treatment (treat‐
ment group) and ‘after’ is a dummy variable that is equal to one 

‘after’ the treatment occurs. By conditioning on these dummy vari‐
ables in an ordinary least squares (OLS) framework, the average 
differences between treatment and control (before treatment) 
and average differences between pre‐treatment control sites and 
post‐treatment control sites are removed. Thus, the coefficient on 
the interaction term, β, indicates the change in outcome due to the 
treatment after differencing away persistent difference between 
groups and shared time trends. Normality of the errors is not re‐
quired for OLS to be unbiased. While the basic model could be es‐
timated with a repeated measure ANOVA if normality of the errors 
is assumed, a regression approach is advantageous with complex 
models, missing or unbalanced data, and when assuming normality 
or homoscedasticity of the errors is overly restrictive.

The simplest setup is when outcomes are observed in two 
periods for both groups where one group's treatment status 
changes from the first period to the next. However, the funda‐
mental assumption of DiD (and other BACI designs) is that if not 
for the treatment, the two groups would have parallel time trends 
(Angrist & Pischke, 2009). As an indirect test of this assumption, 
one can see if there are common time trends across groups be‐
fore the treatment by using additional pre‐treatment time periods, 
when available. DiD can be extended to include covariates, differ‐
ent timing of treatment (‘staggered’ DiD) and an additional control 
group (‘triple difference’).

8.2 | Within‐estimator panel data model

The within‐estimator panel data model is a generalization of DiD 
models to multiple groups and time periods.

Let us say we are again interested in song bird abundance, but 
this time as a function of forest fragmentation. With repeated ob‐
servation of the same sites over time, we can exploit year‐to‐year 
deviations from the mean forest fragmentation of a site to estimate 
how fragmentation affects bird abundance, under certain condi‐
tions, even if we do not have measurements of all the covariates.

(8)Yigt=�+�1treatg+�2aftert+�
(

treatg × aftert
)

+�igt

F I G U R E  2   Causal diagram or Directed Acyclic Graph. Nodes represent variables, arrows represent possible causal effects in the 
direction of the arrow (a drives b, a → b), bi‐directional arcs represent possible confounding relationships, and solid and dashed lines 
represent observed and unobserved variables, respectively. Importantly, causal assumptions are represented by the lack of connections, 
thus (a) assumes model 1 is correct, that there is no omitted variable confounding the estimate of the causal effect of thinning. If there 
was and it was unobserved (b), estimating model 1 would produce biased estimates of the effect of thinning on bird abundance due to the 
correlation between the errors (which include the unobserved confounding variable) and the treatment. If the researcher knew and could 
measure the confounding variable (c), the researcher could find unbiased estimate for the effect of thinning on bird abundance by modelling 
it explicitly; estimating model 2 rather than model 1
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The within‐estimator (also called the least‐squares dummy vari‐
able model) is often and confusingly termed a ‘fixed effects’ panel 
data model, but we continue with ‘within‐estimator’ to avoid con‐
fusion with ‘fixed effects’, as defined in biostatistics (i.e. a non‐ran‐
dom variable). The within‐estimator model could be represented as 
follows:

where Yit indicates bird abundance in site i and time t, α is the inter‐
cept, β is the coefficient of interest, and ɛit is the random error term. 
As elsewhere in this manuscript, we ignore covariates for notational 
convenience.

Here ci represents unobserved heterogeneity that is unique to 
each site i but time invariant over the study period (e.g. climate, soil 
quality) and γt represents unobserved heterogeneity that is unique 
to each year (e.g. weather, technology) that is shared by all sites. If 
either ci or γt is ignored, it ends up in the error term, potentially cre‐
ating endogeneity as described above. Ecologists are familiar with 
using site or year random effects in mixed effects models. Random 
effects models, such as random intercept models, assume that the 
unobserved site‐ or year‐specific heterogeneity is uncorrelated with 
the treatment (Wooldridge, 2002). In many cases this is a strong 
assumption. For example, climate, soil quality, proximity to urban 
centres are all likely to be correlated with fragmentation. If these 
variables were measured and included directly, there would be no 
issue. However, if they are not, a site random effect would not avoid 
omitted variable bias because, although the correlation of observa‐
tions at the same site is modelled, the correlation between covari‐
ate (fragmentation) and the error term is not removed. Instead, the 
within‐estimator can be used. The effect of the within‐estimator is 
that observations are differenced from their site‐specific mean and 
thus identified by ‘within’ site (or year) variation. If the site‐specific 
(time‐specific) unobserved heterogeneity is correlated with frag‐
mentation does not matter because it is effectively removed from the 
model in the differencing. In the case where the site‐specific (time‐
specific) heterogeneity was indeed uncorrelated with the covariates 
(the random effects assumption), the within‐estimator would remain 
unbiased but would be less statistically efficient, or in other words 
have a larger variance, than the random effects estimator (Figure 1). 
However, if the site‐specific (time‐specific) heterogeneity was cor‐
related with the observed covariates, only the within‐estimator 
model would remain unbiased. Though we only discuss site and year 
above, the same logic and applies to other group characteristics as 
well. We point the reader to Larsen and Noack (2017) for an exam‐
ple of using the within‐estimator to understand how crop diversity 
affects agricultural pesticide use, after controlling for year‐specific, 
crop‐specific and region‐specific unobserved heterogeneity.

8.3 | Instrumental variables

The within‐estimator requires panel data and generally does not 
solve reverse causality bias (Table S1; for an exception see Larsen, 
MacDonald, & Plantinga, 2014). However, the instrumental variables 

(IV) approach can jointly solve selection bias, measurement error, 
and reverse causality, provided certain assumptions are met. To iso‐
late causal effects of a treatment on an outcome, the IV approach re‐
quires the researcher to select an ‘instrument’ that (a) is sufficiently 
correlated with the endogenous treatment variable and (b) does not 
affect other determinants of the outcome (i.e. does not belong in the 
main regression). These two assumptions ensure that the variation 
in the treatment variable driven by the instrumental variable is also 
uncorrelated with other determinants of the outcome, thus remov‐
ing the source of endogeneity bias.

As an illustration of how IV works, consider predator‐prey rela‐
tionships which are classic examples of reverse causality as preda‐
tor abundance drives prey abundance, but the reverse is also true 
(Kendall, 2015). If we were, for example, interested in estimating 
the effect of wolf abundance on moose abundance using a linear 
regression, our linear coefficients may instead capture the reverse 
effect. To estimate the effect of wolf on moose abundance, we need 
to sever the reverse causality pathway by isolating a driver of wolf 
abundance that has no direct effect on moose abundance. One pos‐
sible instrument would be the prevalence of canine distemper, which 
drives wolf abundance, but should not affect moose abundance (ex‐
cept through changes in wolf abundance). Note, we are assuming 
here that this predator‐prey system is not closely coupled. If it were 
closely coupled such that there were offset boom‐and‐bust cycles, 
our estimates of the causal effect using cross‐sectional data at any 
point in time would fail to capture the cyclical nature of the relation‐
ship (e.g. Sugihara et al., 2012).

Turning to how an IV approach would work in this setting, we can 
use the exogenous change in wolf abundance due to canine distem‐
per to estimate the effect of wolf abundance on moose abundance. 
Conceptually, an IV approach occurs over a two‐stage regression 
process. The first stage regression relates canine distemper preva‐
lence to wolf abundance via,

In the second stage regression, moose abundance is then regressed on 
the wolf abundance predicted by canine distemper from the first stage,

As Equations 10‒12 show, the variation in wolf abundance used to 
estimate the effect on moose abundance comes only from canine 
distemper. Provided that canine distemper is not correlated with 
other drivers of moose abundance, contained in the error term ɛi, 
then an IV model estimates a causal effect.

In practice, the IV approach entails two further details. First, 
IV is usually implemented with two‐stage least squares, where 
Equations  10 and 11 are jointly estimated. This is to account for 
sampling variability in the predicted endogenous variable. Second, 
as a diagnostic of whether the instrumental variable is strongly cor‐
related with the endogenous variable, one often examines variants 
of the F‐statistic from the first‐stage regression in Equation 10. Such 

(9)Yit=�+� Fragmentationit+ci+�t+�it,

(10)PredAbundancei=�+�Distemperi+ui.

(11)PreyAbundancei=�+� ̂PredAbundancei+�i

(12)=𝛼+𝛽
(

𝛿 + 𝛾̂Distemperi
)

+ 𝜀i
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tests reveal whether there is a ‘weak instrument’ problem, the pres‐
ence of which introduces a bias in the IV estimate that can be as 
large as the endogeneity bias in the initial linear regression model 
(Bound, Jaeger, & Baker, 1995). For a more in‐depth discussion of IV 
in an ecological context, we direct the reader to Kendall (2015). For 
an ecological application which uses the IV approach to the effect 
of forest fragmentation on Lyme disease incidence, we direct the 
reader to MacDonald, Larsen, and Plantinga (2018).

8.4 | Regression discontinuity

In some settings, the assignment of treatment may depend on 
an arbitrary rule arising from policy or institutional features. 
Modifying our earlier land‐use example, let's say forest stands 
were eligible for thinning if they were within 15 km of at least one 
developed area and were at least 3 ha in size. As is often the case 
with such cutoff rules, both the 15 km distance and 3 ha size cri‐
teria may have been arbitrarily specified by some policy. However, 
it may not be desirable to implement a difference‐in‐difference 
method if finding control units that satisfy these criteria requires a 
researcher to expand the data setting into places that are unlikely 
to be similar. For example, a forest stand in Minnesota is unlikely 
to be a valid control for a forest parcel in California even if both 
have the same distance to a developed area and size. Similarly, 
using instrumental variables may not be feasible in some cases due 
to a lack of a satisfactory instrument.

In such settings, a researcher may exploit the arbitrary nature 
of the cutoff rule. Here, one can try to compare stands above 3 ha 
in size that are just <15 km from a developed area (treatment) with 
similarly sized stands that are just more than 15  km from a devel‐
oped area (control). Alternatively, for all parcels that are <15 km from 
a developed area, one can compare stands that are just above 3 ha 
in size (treatment) with those that are just below 3 ha (control). Such 
comparisons implement the regression discontinuity (RD) design. 
Specifically, the RD method exploits a discontinuity in treatment as‐
signment around some threshold value of a ‘forcing’ variable, which 
in our example would be either distance to a developed area or parcel 
size.

The key statistical assumption for the RD method to be valid is 
that only the probability of receiving the treatment jumps discon‐
tinuously as the forcing variable crosses the threshold. All other 
factors that determine the outcome must be continuous around the 
threshold. That is, going back to our example, only thinning eligibil‐
ity changes at the 15 km distance threshold so that any outcome 
differences across the threshold can be attributed solely to thin‐
ning eligibility. Under these conditions, the RD method estimates 
the local average treatment effect only for the subpopulation close 
to the threshold. In practice, this means that the RD method is very 
data demanding, and requires a sufficient density of observations 
within narrow bandwidths around the threshold of the forcing 
variable. Interested readers can learn more about this issue and 
many other RD implementation considerations in Lee and Lemieux 
(2010).

8.5 | Propensity score

Finally, in some settings, it may be argued that a researcher can ob‐
serve all known determinants of an outcome that is correlated with 
the treatment of interest. In that case, known as ‘selection on ob‐
servables’, simply controlling for those covariates in a standard re‐
gression setting would enable a causal interpretation. However, for 
many ecosystems, the list of covariates may number in the hundreds, 
with possible combinations of covariates observed for a treated unit 
not appearing for a control unit.

Propensity scores avoid this high‐dimensionality problem by 
matching or weighting the probability that a site receives treatment 
based on a function of observable characteristics. The propensity 
score is the probability a site receives treatment given its baseline 
characteristics, p(Xi) = Pr(Ti = 1  | Xi) where 0 < p(Xi) < 1. It follows 
from the treatment ignorability assumption that Ti⊥

(

Y0i,Y1i
)

| p(Xi) 
(Rosenbaum & Rubin, 1983). Thus, conditional on the propensity 
score, treatment is independent of potential outcomes. Rosenbaum 
and Rubin (1983) also show that treatment and control observations 
with the same value of the propensity score balance in the distribu‐
tion of baseline characteristics.

Propensity scores are estimated using a regression model for binary 
outcome variables (e.g. logit or probit) where probability of treatment 
is estimated as a function of baseline characteristics with highly flexi‐
ble functional form. The specification should balance the distribution 
of baseline characteristics across the distribution of propensity scores.

There are several ways propensity scores can be used including 
matching on propensity scores, inverse probability weighting the es‐
timator, using propensity scores in a weighted regression, and using 
propensity scores as a covariate adjustment in linear regressions. 
A thorough discussion of different methods can be found else‐
where (Austin, 2011). We simulate propensity score matching and 
propensity scores as a covariate adjustment in a linear regression 
(Supporting Information), and point the reader to Pearson, Ormerod, 
Symondson, and Vaughan (2016) for an ecological application fo‐
cused on agricultural land cover and aquatic ecosystem impacts.

9  | DISCUSSION

A multitude of environmental and ecological challenges facing natu‐
ral systems in the coming decades can be informed by observational 
data. Leveraging the data‐rich landscape of the 21st century for im‐
pact studies necessitates incorporating statistical tools specifically 
developed for disentangling causal relationships in the absence of 
randomized experiments. Here we discussed how observational 
data differ from experimental data, why this difference is of cru‐
cial statistical importance, and introduced some assumptions and 
approaches that can be used to recover a causal interpretation of 
treatment effects in the absence of randomly assigned treatment.

In particular, we emphasized the fundamental importance of zero 
correlation between the covariate of interest and a model's error 
term. The presence of such a correlation leads to what is known as 
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endogeneity bias and thus, incorrect coefficient estimates. Though 
we avoided discussing specific estimation methods, all common re‐
gression methods (ordinary least squares, maximum likelihood, gen‐
eralized least squares, etc.) will generally produce biased estimates 
of the causal effect in the presence of endogeneity bias.

The symptoms of endogeneity bias can present as spatial or tem‐
poral autocorrelation in the residuals. However, if autocorrelation is 
due to omitted variables that are spatially or temporally correlated 
(e.g. climate, soil quality) and correlated with the treatment variable, 
methods that only adjust for autocorrelation of the errors will fail 
to produce unbiased slope estimates for the treatment of interest. 
Similarly adding random effects of site or year may not reduce bias. 
If site characteristics are correlated with the covariate of interest, 
random effects estimators will remain biased. Rather, recognizing 
and applying methods to overcome the underlying source of endog‐
eneity bias are fundamental to reliable point estimates.

This paper's main contribution is to provide basic intuition for 
developing causal inference using observational data for differ‐
ent types of control–impact analyses. We necessarily could not 
provide a full treatment of such approaches, nor comprehensive 
treatment of causality in all observational settings. For instance, 
our maintained assumption throughout this manuscript that a 
random sample could be drawn from the population (at least in 
the cross‐section dimension; Wooldridge, 2002), extends to more 
complicated sampling designs such as stratified or clustered sam‐
pling (Wooldridge, 2002). Further, we ignored concerns regarding 
the efficiency of estimators. Lastly, our focus on control–impact 
analyses does not include all notions of causality relevant to ecol‐
ogists. In particular, while many of the methods discussed can be 
extended to nonlinear models where the marginal effect of the 
treatment variable is not constant over its entire range (e.g. lo‐
gistic regressions), we excluded discussion of dynamic notions of 
causality involving coupled variables (e.g. Granger, 1969; Sugihara 
et al., 2012). For coupled systems such as coupled predator–prey 
cycles, the methods discussed here would misspecify the nature 
of relationship as such systems cycle among positive, negative and 
neutral correlation between predator and prey. As observational 
data expand to provide sufficiently expansive species‐specific 
time series observations, dynamic forms of causality will become 
increasingly relevant.

Nevertheless, many global environmental challenges of today 
and tomorrow will take the form of control–impact studies, where 
treatment evaluation is of primary interest. It is for those ques‐
tions that a focus on unbiased statistical estimates of the treat‐
ment effect will be invaluable for addressing important ecological 
questions. Though we relied on hypothetical examples to stream‐
line discussion, these methods discussed herein are not entirely 
new to ecologists. We point the reader to Gross and Rosenheim 
(2011), Bonds, Dobson, and Keenan (2012), Larsen (2013), Larsen 
and Noack (2017), and MacDonald et al. (2018) for empirical eco‐
logical studies using these methods, to Kendall (2015) and Butsic, 
Lewis, Radeloff, Baumann, and Kuemmerle (2017) for additional 
methodological discussion aimed at the ecology audience, and to 

Wooldridge (2002) or Angrist and Pischke (2009) for advanced 
and introductory texts, respectively, on econometric methods. 
Ecologists have a strong tradition of causal inference in experi‐
mental research. Here we encourage a similarly strong interest 
in causality in observational control–impact studies such that we 
can better leverage novel data sources to inform ecological under‐
standing and environmental policy.
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