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Abstract. Distinguishing between human impacts and natural variation in abundance
remains difficult because most species exhibit complex patterns of variation in space and time.
When ecological monitoring data are available, a before-after-control-impact (BACI) analysis
can control natural spatial and temporal variation to better identify an impact and estimate its
magnitude. However, populations with limited distributions and confounding spatial-temporal
dynamics can violate core assumptions of BACI-type designs. In this study, we assessed how
such properties affect the potential to identify impacts. Specifically, we quantified the condi-
tions under which BACI analyses correctly (or incorrectly) identified simulated anthropogenic
impacts in a spatially and temporally replicated data set of fish, macroalgal, and invertebrate
species found on nearshore subtidal reefs in southern California, USA. We found BACT failed
to assess very localized impacts, and had low power but high precision when assessing region-
wide impacts. Power was highest for severe impacts of moderate spatial scale, and impacts were
most easily detected in species with stable, widely distributed populations. Serial autocorrela-
tion in the data greatly inflated false impact detection rates, and could be partly controlled for
statistically, while spatial synchrony in dynamics had no consistent effect on power or false
detection rates. Unfortunately, species that offer high power to detect real impacts were also
more likely to detect impacts where none had occurred. However, considering power and false
detection rates together can identify promising indicator species, and collectively analyzing
data for similar species improved the net ability to assess impacts. These insights set expecta-
tions for the sizes and severities of impacts that BACI analyses can detect in real systems, point
to the importance of serial autocorrelation (but not of spatial synchrony), and indicate how to
choose the species, and groups of species, that can best identify impacts.

Key words:  before-after-control-impact (BACI) analysis; impact detection, informedness; long-term
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Fukuyama et al. 2014). In response to the need for more
rigorous impact assessments, many government agencies
have initiated long-term monitoring programs (Field
et al. 2007, Fancy et al. 2009). Using such monitoring

INTRODUCTION

After the T/V Exxon Valdez spilled oil over 2,000 km
of wild Alaskan coastline in 1989, the parent corpora-

tion argued to reduce their liability to a fraction of the
billions of dollars in damages originally assessed. Their
arguments succeeded, in part, because the lack of base-
line data in Prince William Sound, Alaska, made it diffi-
cult for scientists to assess natural resource injuries
stemming from the spill with enough certainty to assign
culpability (Jewett et al. 1999, Skalski et al. 2001,
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data, a before-after-control-impact (BACI) statistical
design (Stewart-Oaten et al. 1986, Underwood 1992,
1994), comparing affected sites with unaffected sites
before and after an event, can help test for impacts such
as occurred after the 2010 Deepwater Horizon spill
(Dietl and Durham 2016, Lauritsen et al. 2017). Recent
simulation studies have reemphasized the advantages of
BACI over alternative approaches such as before-after,
control-impact and randomized control trials (Christie
et al. 2019). However, the classic BACI analysis makes
several assumptions that are often violated by spatially
replicated time-series data, and the unbalanced
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statistical designs resulting from unexpected impacts can
have low replication and poor power to discriminate
between human impacts and natural confounding varia-
tion. The degree to which these violated assumptions
compromise BACI approaches can be hard to assess
from simulation studies. Here, we use real-world data to
assess how well a BACI design can detect various hypo-
thetical impacts, and identify ways to improve its perfor-
mance.

By definition, a BACI design compares control (i.e.,
non-impacted) and impacted sites. When it is not clear
where an impact might occur, monitoring sites cannot
be planned to sample both impacted and non-impacted
areas. In some cases, as in Prince William Sound, an
event might fail to impact any monitoring sites, at which
point, control and impact sites can be surveyed only
after the impact occurs (e.g., a control-impact study).
The risk that an impact occurs at a site where no moni-
toring data are being collected can only be reduced by
adding sites or placing them more strategically. Further-
more, power to detect an impact is, all things being
equal, highest when one-half of the sites are impacted
(Shaw and Mitchell-Olds 1993). Therefore, monitoring
programs usually aim for dispersing sites broadly, choos-
ing areas that differ in their exposure to impacts, or
choosing sites that managers care about most. Regard-
less, the number and distribution of monitoring sites will
affect the utility of a BACI design and the extent to
which it is balanced.

The other main limitation to BACI designs relates to
natural temporal and spatial variation in species abun-
dances. Random variation reduces statistical power,
whereas nonrandom variation can either increase the
false impact detection rate by creating confounding
impacts or decrease power by altering the signal to
noise ratio. In many cases, nonrandom variation occurs
due to natural environmental drivers. For instance, sub-
strate type, ocean temperature and wave action each
drive substantial spatial and temporal variation in spe-
cies abundances in benthic marine ecosystems (Caselle
et al. 2015, Castorani et al. 2018, Miller et al. 2018).
Although this variation may in some cases be reduced
through the use of paired BACI designs (Stewart-Oaten
et al. 1986), in most cases, it must be accounted for
through the use of covariates. Including such covariates
when testing for diverging population trajectories at
impacted sites can partially account for serial autocor-
relation and spatial synchrony caused by environmental
drivers (Rost et al. 2012, Martinez-Abrain et al. 2013,
Lamy et al. 2019). Consequently, false impact detec-
tions due to temporal and spatial autocorrelation may
be reduced by incorporating underlying environmental
drivers as covariates (Parker and Wiens 2005, Kalies
et al. 2010). When environmental drivers are not
known, random effects for year or site can account for
site-specific environmental effects. However, increasing
model complexity, whether by adding covariates or ran-
dom effects, can also reduce power and inflate
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uncertainty in estimated effects if models are overspeci-
fied (i.e., overfitting) or variables/random effects are
confounded (i.e., strong collinearity).

Large-scale drivers of kelp forest systems such as sea
surface temperature and the North Pacific Gyre Oscilla-
tion affect regions rather than individual sites (Reed
et al. 2011, Bell et al. 2015, Lamy et al. 2018, Okamoto
et al. 2020), and may cause species at nearby sites to
fluctuate synchronously rather than independently. For
instance, populations may collectively decline due to
regional collapses in productivity (Okamoto et al. 2012,
2016), a host might decline due to widespread disease
(Harvell et al. 2019), or the relative abundance of cold
and warm water species might respond to climate trends
(Holbrook et al. 1997). When the drivers of such tempo-
ral synchrony are not known (or have not been mea-
sured), it can confound before-after comparisons. Most
monitoring programs do not have the time series needed
to make before-after comparisons, let alone account for
temporal correlation structure (Ramsey and Schafer
2002). Even when long time series are available, it can be
difficult to disentangle impacts and recovery from natu-
ral trends. Here, we consider the extent that it would be
possible to control for serial autocorrelation using
autoregressive models with reasonably long-term ecolog-
ical data (Stewart-Oaten 2003).

The ability to account for autocorrelation depends on
how the spatial scale of those correlations relates to the
spatial scale of an impact. Some environmental covari-
ates vary from site to site, whereas others affect a few
neighboring sites at a time. For instance, storms, disease
outbreaks, and large temperature anomalies can affect a
whole region, or just a small stretch of coastline. Such
spatially concentrated effects lead to patchy temporal
changes that might appear to be anthropogenic. For
instance, if a warm-water event affects species in one
part of the monitored region more than another, then
this natural change might be misinterpreted as a human
impact. Because such natural changes might coincide
with hypothesized impacts, we might expect such spatial
synchrony would increase the false detection rate, a pos-
sibility we explore here.

In environmental assessments, BACI designs often
compare abundances in time and space, focusing on one
species at a time. However, different species may vary
dramatically in their utility for detecting impacts, even if
they are similarly vulnerable to disruption by human
activities (Roberge and Angelstam 2006, Meyer et al.
2010). Species differ in their distributions, their charac-
teristic temporal variability and sensitivity to environ-
mental drivers, and the degree to which regional
populations vary synchronously. An ideal species for
impact detection would be widespread with a strong sen-
sitivity to impacts relative to its year-to-year variation
under natural conditions. Unfortunately, many species
may not be ideal for BACI analyses. Therefore, we evalu-
ated how species varied in their ability to indicate
impacts, and how analyzing populations of multiple
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species simultaneously might improve BACI perfor-
mance while reducing false impact detections.

We investigated statistical power and false impact
detection for a BACI design when applied to monitoring
data for reef fishes, invertebrates, and macroalgae col-
lected by the Channel Islands National Park (CINP)
and the U.S. Geological Survey (USGS). The CINP has
been monitoring 16 sites at five islands (San Miguel,
Santa Rosa, Santa Cruz, Anacapa, and Santa Barbara
Islands) off California annually for more than 30 yr
(Fig. 1). The USGS has annually monitored seven sites
at nearby San Nicolas Island (SNI) over a similar time.
Although there are some differences between the pro-
grams’ methods, both programs count mobile inverte-
brates, fish, and kelp within permanently marked areas,
and sample the percent cover of sessile invertebrates and
smaller macroalgae using point contact methods (full
details on sampling methods are given in Kenner et al.
[2013] and Kushner et al. [2013]). In this marine system,
natural variability occurs in space and time (Reed et al.
2016, Lamy et al. 2019). On shallow reefs in southern
California, for example, ecological communities can
change abruptly (Ebeling et al. 1985, Harrold and Reed
1985, Rassweiler et al. 2010), and are influenced by
environmental gradients combined with year-to-year
variation in recruitment or temporally correlated envi-
ronmental forcing (e.g., the El Nino Southern Oscilla-
tion or Pacific Decadal Oscillation; Kenner and Tinker
2019). BACI has been used successfully with these data
sets, even for single species (Schroeter et al. 2001, Parnell
et al. 2005), suggesting these data are suited for evaluat-
ing the strengths and weaknesses of this statistical
approach.

We applied hypothetical simulated impacts that dif-
fered in severity (e.g., percent reduced abundance) and
spatial scale (impacts varied in their radius). Impor-
tantly, although the impacts were simulated, the under-
lying data were otherwise real, and thus introduced all
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the complications present in real-world impact analy-
ses. After controlling for serial autocorrelation in the
data, we asked how rarity, spatial synchrony, and vari-
ability in time affected the power to detect impacts
and false impact detection rates (type I error). We also
asked how each affected “informedness” (Youden 1950,
Powers 2011), a metric that simultaneously measures
capacity to accurately detect real impacts and avoid
false impact detections. In addition to analyzing indi-
vidual species, we explored whether analyzing species
groups improved or diminished informedness. These
analyses set expectations for the utility of BACI analy-
ses when applied to marine monitoring data, both in
this system and in similar ecological contexts, and sug-
gest best practices for design and implementation of
such analyses.

METHODS

Data used

We considered 28 common species (5 macroalgae, 10
fish, 7 mobile invertebrates, and 6 sessile invertebrates)
that were sampled in compatible ways for the whole
length of both monitoring programs. We used data from
the 16 CINP sites that have been monitored annually
since 1985 and the 7 SNI stations monitored over a simi-
lar timeframe (all data used here are published in Ken-
ner et al. 2013, Kushner et al. 2013). CINP samples once
per year in summer to early autumn, while the SNI sites
are sampled twice per year, once in late summer to early
autumn and once in spring. We excluded the spring sam-
ples from the SNI data to maintain compatibility in tem-
poral resolution between the two data sets. For each site
and sampling year, we aggregated the data for each spe-
cies to produce a measure of abundance based on total
count (individuals or points observed) along with the
total area or number of points sampled.
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Fic. 1. Study sites in the Southern California Bight, USA. Shapes indicate the programs, designated as either San Nicolas

Island or the Channel Islands National Park.
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Simulating human impacts

We simulated a hypothetical human impact by reduc-
ing a species’ abundance over a period of time at “im-
pacted” sites, and then analyzed this altered data set to
determine whether the reduction in abundance was sta-
tistically detectable and how the likelihood of detection
varied for each species and across different spatial scales
and severities of impact. We focused here on impacts
that reduce the abundance of one or more species. We
acknowledge that impacts often have cascading conse-
quences on non-impacted species, occurring through
trophic or other interactions. However, such interactions
are likely to be complex in real food webs, and difficult
to predict without a full model of community interac-
tions that includes its own assumptions about system
dynamics.

We simulated circular impacts of varying radii, cen-
tered at random between a latitude of 33.2° and 34.1° N
and a longitude between 119.0° and 120.4° W, a domain
that included all sites in the data set. The location and
radius determined which monitoring sites were
impacted. We then selected an impact year at random
between 1996 and 2006. The 10 yrs before the selected
impact year were used as pre-impact data and the 5 yrs
after were used as our post-impact period. By doing so,
we manipulated the spatial balance between the number
of impact and control sites, but fixed the temporal bal-
ance between the number of pre- and post-impact years.

For each simulated impact, we constructed a new data
set in which the actual observed abundances of each spe-
cies were retained for all sites in the pre-impact period
and the control sites during the post-impact period, but
data from the impacted sites in the “post” period were
replaced with proportionally reduced abundances. The
degree to which impacted abundances were reduced was
based on impact severity, which was the average fraction
by which the abundance of each species within the
affected area was reduced (so a severity of 0 meant no
effect was simulated; i.e., zero change in abundance at all
sites), while a severity of 100% meant complete absence
of species at all the impact sites. Within a given simula-
tion, we assumed all monitoring sites within the chosen
radius of the center of the impact were similarly reduced
over the post-impact period (so effects were spatially
uniform and persisted over time). Because the data rep-
resent counts (either of whole organisms or of points
where organisms occur), simulated severity was applied
probabilistically by rounding to the neighboring integers
with probability reflecting the remaining decimal (e.g.,
10.25 was rounded to ten 75% of the time and to eleven
25% of the time). This probabilistic rounding was done
to maintain the integer nature of the data while main-
taining overall mean impact severity. For each impact
level and each species/functional group, we ran 1,000
simulations and summarized statistics across runs. A
bootstrap resampling of our simulations with replace-
ment indicated that 1,000 simulations was sufficient to
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reduce error and achieve convergence (Appendix S1:
Fig. S1). To simplify interpretation, we assumed species
impacts were independent (e.g., a reduction in a predator
did not result in an increase in its prey).

Statistical models

We used generalized linear mixed effects models for all
analysis with a before/after (BA) effect, a control/impact
(CI) effect, and an interaction between BA and CI terms
representing the BACI effect. This model structure
hypothesized a step-change in the abundance of the eval-
uated species at the impacted sites, and was consistent
with the actual structure of our simulated impacts. Alter-
native forms of BACI, for example those assuming the
impact causes a change in population trend over time
(Thiault et al. 2017), were not evaluated here.

We used a Poisson likelihood for count data and bino-
mial likelihood for point contact data. We attempted to
keep the models simple to minimize convergence issues
and model fitting errors in the simulation algorithm. We
avoided both the negative binomial and beta-binomial,
which also account for additional dispersion, because
these implementations converged less reliably over many
randomization runs. Instead, to account for both over
dispersion and zero-inflation, we included a random log-
normal error dispersion term in the model. We also
excluded sites from our analysis if the focal species was
present at fewer than 15% of sampling events, to reduce
zero-inflation and constrain data sets for reasonable
comparisons. Rather than add site-level covariates (not
all of which were known), to account for among-site
variation, we added a random effect of site in the single-
species models, and site within species for the multi-
species models. We used this random-effects structure
because the spatial distribution of abundances among
sites is expected to vary by species. Serial autocorrelation
was calculated as the within-site empirical partial auto-
correlation function, averaged across all sites. To
account for serial autocorrelation in our analyses, we
used a first-order autoregressive model (AR(1)) on the
within-site error terms. Inclusion of the AR(1) model
occasionally yielded identifiability challenges, particu-
larly for species that were only intermittently present at
sites, and thus we also report scenarios where models did
not converge. We estimated statistical models using
glmmTMB (Magnusson et al. 2016) in R (R Core Team
2017) with the default algorithms for generality and
because they provided flexibility and performance over
alternatives. Code is available in a Git repository
archived on Zenodo (Okamoto 2020).

Performance metrics

Performance metrics for each run included the follow-
ing: (1) one-sided significance tests (negative and posi-
tive) for impact (from which we calculated power or
false impact detection rates, depending on whether an
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impact was simulated), (2) whether or not the model
converged (indicating when a model failed despite hav-
ing sufficient data for analysis), (3) data sufficiency, in
this case requiring at least two sites in each of the control
and impact categories with at least 15% of the years with
the species present in the original data (this threshold
was chosen for efficiency as data below this threshold
consistently provided unreliable model estimates), (4)
relative error from the true effect measured as (estimated
impact — true impact)/(true impact) (this was only calcu-
lated when we simulated a non-zero impact) where the
among-simulation mean provides an estimate of bias,
and (5) the Youden’s J informedness statistic, which
measures the probability of a correct inference, assuming
an even prior probability of no impact vs. a true impact,
thereby assessing both false negative and positive errors
(Youden 1950, Powers 2011). Informedness is calculated
as the sensitivity (i.e., the probability that a true impact
is detected) plus the specificity (the probability that no
significant effect is detected in cases where there was no
impact) minus one.

Additional statistics

To explore the impact of species rarity, temporal vari-
ation and spatial synchrony, we calculated various prop-
erties for each species and assessed how they affected
model performance. To describe rarity, we considered
two related metrics: (1) fraction of simulations in which
there was insufficient data to conduct the analysis (i.e.,
the species was absent from control sites, absent from
impacted sites, absent before, or absent after), and (2)
fraction of sites in which the species was present. For
temporal variation, we calculated the coefficient of vari-
ation as the within-site standard deviation divided by
the within-site mean, averaged across all sites for the
10 yrs before the impact. Spatial synchrony among sites
was estimated as the variance of the mean time series
divided by the sum of the covariance matrix of the group
of individual time series (Loreau and de Mazancourt
2008). We compared whether these metrics could explain
power and false impact detection rates using generalized
linear models with a beta-binomial likelihood in a multi-
ple regression framework. To make coefficients compa-
rable, we centered and standardized all variables by
subtracting the mean and dividing by the standard devi-
ation. Predictor variables that had only positive values
(i.e., coefficient of variation, fraction of sites with suffi-
cient data, and synchrony; all must be >0) were log-
transformed.

Species combinations

Because averaging among species can help account for
balance and natural temporal and spatial heterogeneity,
we assessed power and false impact detection rates for
different species combinations. Combinations included
all species of the same functional group (macroalgae,
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fish, mobile invertebrates, sessile invertebrates), and a
series of species subsets generated by sequentially adding
species ranked in informedness from highest to lowest
and lowest to highest (based on single-species analysis).
For the latter analysis, we combined only species with
counts (not point contact data) in order to maintain a
consistent response variable and likelihood structure.

REsuLTS

Impact severity and area

As expected, the likelihood of detecting an impact
with a BACI design (i.e., statistical power) increased
with impact severity. This is illustrated by the top panels
of Fig. 2, which are representative of the pattern across
species. Furthermore, power had a hump-shaped rela-
tionship with the area impacted, as illustrated for the
black surfperch, Embiotoca jacksoni and the giant kelp,
Macrocystis pyrifera (Fig. 2A and B). This reflects the
probability of obtaining a balanced statistical design
with a similar number of impacted and control sites. Sta-
tistical balance was most likely for impacts about 65 km
in radius (~13,000 km?); very small-scale impacts were
unlikely to impact monitoring sites, whereas large-scale
impacts were unlikely to exclude many control sites. The
probability of having occupied control and impact sites
at a particular scale varied based on the distribution of
each species, but only slightly (Fig. 3). Although the
general shape of this pattern and location of the peak in
statistical power was consistent across most species ana-
lyzed, the peak’s height varied from species to species, as
discussed in more detail below. Although statistical
power peaked at intermediate impact areas, precision in
estimates of impact severity increased monotonically
with impact area, with relative error in estimates show-
ing a consistent decline (and no change in bias) as area
increased (Fig. 2C and D). Estimates of impact severity
were not consistently biased, with about half the species’
estimates above and half below the true severity for an
80% simulated reduction (Appendix S1: Fig. S2). Impor-
tantly, decreases in impact severity resulted in increases
in among-run variation (i.e., decreased statistical effi-
ciency) and bias in the estimate (Appendix S1: Fig. S3),
although the degree of bias and variation differed by
species. In short, BACI failed to assess small-scale
impacts, and had low power, but high precision when
assessing large-scale impacts.

Variation in power and false impact detections

False impact detections were higher than the target
false positive rate of 5%, power was generally low, and
both varied substantially among species and impact sce-
narios. In simulations where one-quarter of sites were
impacted (five or six sites), both power and false impact
detection rates differed among species (Fig. 4). Addi-
tionally, we found that false impact detection rates were
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Power to detect impact
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Fic. 2. Top panels illustrate detection probability as a function of the spatial scale and severity of an impact for Embiotoca jack-
soni (black surfperch, left) and Macrocystis pyrifera (giant kelp, right). Bottom panels show relative error in the estimate of effect
size as a function of spatial scale of impact (shown for an impact severity of 80%). Bands are the 90% quantiles (light gray)
interquartile range (dark gray), and median error (dotted black line). Error is standardized as the log-estimate minus the log-true
value divided by the log-true value. Percentages in parentheses indicate percent of sites typically impacted by impacts of that area.

often more common than expected based on the nomi-
nal alpha level of 0.05. In scenarios with no simulated
impact (zero severity, right panels of Fig. 4), only 11 out
of 28 species had <5% false impact detection while 23
out of 28 had a <10% false impact detection. Elevated
false impact detection rates were attributable (at least in
part) to the spatial clustering of impacts. If impact sites
were scattered across the region instead, as might occur
with a change in coastal zoning such as implementation
of a network of marine protected areas, false impact
detections were less common (Appendix S1: Fig. S4).

If serial correlation had not been accounted for, as we
did with an AR(1) model, false impact detections would
have been much more frequent (Fig. 5), particularly for
species with positive year-to-year correlations (i.e.,

higher levels of correlation). This effect was stronger for
scenarios where impacted sites were spatially aggregated
than when they were isolated (i.e., impacts were scattered
across sites). Although helpful, a first-order autoregres-
sive model did not always eliminate serial autocorrela-
tion, probably due to higher order correlations, variance
among sites in the degree of autocorrelation, or
heteroskedastic error variances.

Power to detect even strong impacts was variable
among species in part because some species were present
at few sites in the region or exhibited enormous year-to-
year variation in abundance. Results of post-hoc regres-
sions on statistical power and false impact detections
showed that power was lower for rare species (those pre-
sent at few sites) and was also lower for species with
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Fic. 3. Effect of impact area on (A) mean percentage of sites impacted (the red dashed line indicates the point at which statisti-
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(thick blue line), and (C) detection probability for before-after-control-impact (BACI) estimates for each species (thin gray lines)
and the mean probability (blue line). Results are shown for an 80% impact. Note that closely spaced grey lines appear as a heavier

black line in panels A and B.

higher temporal variability and higher serial correlation
(even after applying an AR(1) error model). However,
spatial synchrony did not have the predicted effect of
increasing power or false negative detection rates
(Table 1, Fig. 6). Unfortunately, the same properties
that provided high statistical power also increased false
impact detections (Figs. 6, 7). However, some species
yielded low false impact detection with only modest sta-
tistical power (e.g., the giant kelp, Macrocystis pyrifera),
whereas others exhibited similarly low false impact

detection, with high statistical power (e.g., the black surf
perch, Embiotoca jacksoni).

We calculated informedness of each species-specific
analysis, which is the likelihood of detecting a true
impact in a species discounted by the rate at which false
impact detections occur. Species varied across a wide
range of informedness from near 0 (the sandcastle worm,
Phragmatopoma californica) to >0.75 (California sheep-
head, Semicossyphus pulcher; cup corals, Balanophyllia
elegans and Astrangia lajollaensis; Fig. 7, Appendix S1:
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Patiria miniata
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yenopodia helianthoides
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All sessile invertebrates
Balanophyllia elegans
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Serpulorbis squamigerus
Diopatra ornata
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species are plotted as well as results using all species within a taxonomic group in a nested framework (the top bar in each panel,
excluding species sampled by point contact for macroalgae). Colors represent proportions of different outcomes from the simula-
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Table S1). In a beta regression (intercept = —1.5 + 0.82
[mean + SE], P = 0.0664), three factors predicted a spe-
cies’ informedness, the fraction of sites with sufficient
data (4.61 + 0.61, P < 0.0001), followed by the mean
CV of the control sites (—1.73 £+ 0.46, P = 0.002), and
the partial autocorrelation coefficient (—3.98 + 0.87,
P < 0.0001).

Species combinations

Statistical power in the nested BACI analysis
increased substantially when species within a taxonomic
group were analyzed collectively relative to when species
were analyzed separately (Fig. 4, indicted by “all
macroalgae,” “all sessile inverts,” “all mobile inverts,”
“all fish”). For three of the four taxonomic groups, false
impact detections in the combined analyses resembled
the mean independent false impact detection rate (a
regression to the mean); macroalgae proved an exception
to this pattern as combining the three species increased

ELNTS

the probability of both false impact detections and the
statistical power beyond what was observed for any of
the component species (Fig. 4). Only three macroalgal
species were pooled here because of differences in mea-
surement types (point contact vs. counts).

Individual species informedness had a large impact
on grouped informedness. When adding species start-
ing with those with the highest individual informed-
ness, grouped informedness rapidly saturated with the
five or six most informed species, peaking after six to
nine species were included and even falling slightly
when species with lower informedness were added to
the group (Fig. 8, blue points). In contrast, grouped
informedness saturated much more slowly when adding
species from lowest to highest informedness, and
peaked only as the most effective 25% of species began
to be added (Fig. 8, red points). Thus, although group-
ing species for analysis is promising, -efficiency
depended largely on which species were used in the
analysis.
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TasLE 1. Standardized coefficients and 95% confidence intervals from the beta-binomial GLM.

Power False impact detections
Source Estimate 95% CI Estimate 95% CI
Coefficient of variation —0.71 [—1.01:—0.42] —0.24 [—0.49:0.01]
No. sufficient sites 0.99 [0.68:1.31] 0.37 [0.06:0.69]
Spatial synchrony 0.15 [—0.13:0.43] —0.18 [—0.45:0.08]
Serial correlation —0.51 [—0.85:—0.17] 0.28 [—0.02:0.59]
Time series length 0.12 [—0.15:0.39] —0.08 [—0.40:0.24]

Notes: Models for both power and false impact detections included all shown variables. For interpretation, the coefficients repre-
sent the rate of change of the response to a single standard deviation change in the predictor. Thus, all coefficients within a model

are directly comparable.

DiscussioNn

BACI analyses were most effective at detecting severe
impacts of intermediate spatial scales. Accounting for
temporal autocorrelation resulted in unbiased estimates,
but the power to detect impacts was quite variable across
species. Observed power was often lower than that pre-
dicted by simulation studies with similar sample sizes
(Christie et al. 2019), but better than assumed from
short-term studies (Schroeter et al. 1993). Informedness
metrics, which discount statistical power based on the
false detection rate, revealed that the species that best
inform impacts in this system are ubiquitous, have low
year-to-year variation in abundance, and exhibit little
temporal autocorrelation. Grouping species into

broader taxonomic groups increased statistical power
and reduced false impact detection rates, primarily due
to including species with high informedness, highlighting
how species selection can improve impact detection.
Substantial 5-yr impacts were surprisingly difficult to
detect using a BACI design. The most common cause of
analysis failures resulted from imbalance, high natural
variability, and serial autocorrelation, but not spatial
asynchrony. Many simulated impacts led to unbalanced
designs, which reduced statistical power. Complicating
matters further, some species abundances varied sub-
stantially from year to year, reducing the power to detect
change, while other species experienced long-term natu-
ral trends that were difficult to differentiate from an
impact, even after controlling for serial autocorrelation.
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It is important, therefore, to account for serial correla-
tions in BACI analyses, consider environmental drivers,
and limit assessment to those species that are best suited
for indicating impacts. Only by understanding sources of
error can we improve impact detection.

As expected, we found that more severe impacts were
more detectable, but that the relationship between
impact spatial scale and detectability was more com-
plex, and depended on the spatial extent of monitoring
locations and their density. Impacts that were small rel-
ative to the average spacing between monitoring sites
were often not detectable because there were few, if any,
monitoring sites in the impacted area. Under real-life
circumstances when only one monitoring site is
impacted, an alternative approach is to determine if
other monitoring sites are available, unimpacted, and
possess coherent dynamics with the impacted site. If
such a situation exists, one may investigate whether a
BACI Paired-Series (BACIPS) design (Osenberg and
Schmitt 1996) may have an enhanced ability to detect
an impact compared to the region-wide BACI. In any
case, description of natural variability obtained from
long-term monitoring of the ecosystem can assist in
developing a control-impact study should the small-
sized perturbation completely miss any of the moni-
tored sites.

By contrast, impacts that approach the spatial scale of
the whole monitoring program often had few or no non-
impacted control sites that could be used for control-im-
pact comparisons, limiting impact detection to before-
after impact analysis, which would only be appropriate
for species where serial autocorrelation and environmen-
tal covariates could be controlled for statistically or vital
rates can be measured directly. This result argues for sci-
entists and resource managers to consider the spatial
scale of potential threats that may endanger the man-
aged area of interest when designing a monitoring pro-
gram. Given that before-after designs often give biased
estimates of impacts (Christie et al. 2019), setting up
monitoring sites or collaborating with other monitoring
groups outside the jurisdiction of the managed area
should be considered if potential impacts are anticipated
to have large spatial scales.

Managers can improve balance by choosing particular
species and sites. Although expected sensitivity to poten-
tial impacts is of obvious importance, among similarly
sensitive taxa, broadly distributed species (or species
groups) are more likely to result in a balanced design
than rare species, and focusing on such species is akin to
increasing the number of monitored sites. Similarly,
choosing some monitoring sites that are likely and unli-
kely to be impacted will increase balance. Such strategic
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site selection is often advocated in textbook examples of
BACI designs when the impact has a known spatial and
temporal scope, such as might result from a new power
plant or marine reserve (Schmitt and Osenberg 1996).
When impacts are unplanned, such as an oil spill or a
species introduction, it might still be possible to pick
sites based on risk models. For example oil spill models
use information about potential sources and ocean cur-
rents to identify sites at high and low risk of spilled oil
(e.g., the General NOAA Operational Modeling Envi-
ronment; Al Shami et al. 2017, Guo 2017, Li and John-
son 2019), which could form the basis for choices about
where to monitor. However, when impacts are not pre-
dictable, or when a monitoring is not intended to
address a specific anticipated impact (e.g., Davis 2005),
then managers might wish to select sites that are either
particularly sensitive, or of particular interest, as this is
where impact assessments will be most relevant. This
was the case for the data evaluated here. The area was
mostly within a national park, and the sites were chosen
for their high biodiversity value and favorable physical
context (e.g., rocky reefs rather than soft sediment).
These decisions increase the coverage of kelp forests
within the data, but also limit the degree to which obser-
vations at these sites are representative of the coastline
as a whole.

Temporal variation, reduced power, and serial auto-
correlation increased false impact detection rates. False
impact detections were particularly apparent for local-
ized spatial impacts (the focus of this analysis), but also
occurred when impacts were scattered across the region.
Fortunately, a first-order autoregressive model with a
common parameter among sites reduced the false
impact detection rate by more than one-half (though it
did not solve it completely), and suggests that this
approach should be included in BACI designs, especially
when the data include several pre-impact data points for
assessing trends. The strength of this problem varied
across species, a pattern to consider when choosing
which species to monitor. We found that statistical
power was highest and false detection rates lowest for
species with low temporal variation, serial correlation,
and spatial synchrony. Given ever-present constraints on
resources, it is tempting to focus sampling on such tract-
able species. However, if more variable species are more
sensitive to anthropogenic impacts, such a limited sam-
pling regime might systematically underestimate the
severity of these impacts, posing difficult trade-offs for
program design.

Often, false impact detections were not due to error,
but instead were real population trends that differed
across the study region, violating the assumption that, in
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the absence of an impact, species change in a similar
way at both control and impact sites (Stewart-Oaten
et al. 1986, Underwood 1992). Although our models
accounted for temporal autocorrelation, it is consider-
ably more complicated to adjust for patterns of spatial
autocorrelation. The 23 monitoring sites in our analysis
are irregularly distributed across a broad area, with large
gaps between sites, and the spatial structure in popula-
tions of most species in this system are driven by com-
plex environmental, biological, and anthropogenic
factors that are often not well represented by geographic
distance (Watson et al. 2011, Lamy et al. 2018). When
impacts were randomized in space, such that distant sites
were as likely to be co-affected as nearby ones, false
impact detections were reduced (Appendix S1: Fig. S4).
In this case, 15 of 28 species rather than 11 of 28 had a
<5% false impact detection rate. Therefore, when assess-
ing localized impacts, it is important to evaluate how
much spatial autocorrelation is a problem, and identify
species that are particularly sensitive to spatial autocor-
relation. Simulations like the ones done here are one
route to obtaining such knowledge. These results also
emphasize the importance of including key environmen-
tal covariates whenever possible.

Impacts on some species may be difficult to detect
even with an extensive monitoring program. The
macroalgae in this data set provide a striking example of
this; a severe impact would be detected less than half the
time for any of the five species examined, either because
the species had high unexplained variance, or because it
was not found at many sites. For example, the five spe-
cies with the lowest Informedness were a mix of algae
and invertebrates (Phragmatopoma californica, Eisenia
arborea, Desmarestia ligualata, Megastraea undosa, and
Pterygophora californica), but all had temporal coeffi-
cients of variation much larger than their mean abun-
dances, and each species was observed at fewer than
77% of the sites. Not only do such species make poor
indicators, but the false discovery rate increases with
each species analyzed.

We suggest three approaches to the species problem.
The first is to accept that some species are poor indica-
tors and limit the expectations that impacts on such spe-
cies will be detected. Indicator value, which is best
measured as informedness, was predictable from infor-
mation on prevalence (% times seen), average (unex-
plained) CV, and the partial autocorrelation coefficient.
Therefore, the species that best inform impacts in this
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system are ubiquitous, have little year-to-year variation
in abundance and little temporal autocorrelation. The
second approach is to group species according to ecolog-
ical role, morphological traits or taxonomic affinities.
The average across species should have higher prevalence
and a lower CV, and a lower partial autocorrelation
coefficient than the average within species. We grouped
species within broad taxonomic categories, but it might
be more efficient to average species that correlate nega-
tively with one another. Although our analysis did not
simulate the cascading effects of species interactions
such as competition and predation, interactions of this
type might lead to negative correlations of this sort.
Averaging always improved statistical power, and usually
reduced false impact detections. However, averaging was
most effective when poor indicators were excluded. In
other words, one bad alga could spoil the bunch. A third
approach is needed when variable species are a high pri-
ority for monitoring, or when dropping species might
bias interpretations about impact severity. For such spe-
cies, managers might consider changing the sampling
technique, scale, or frequency to increase a species’
informedness for impact detection.

Due to natural temporal trends, and patchy distribu-
tions, ecological data often fail to meet BACI assump-
tions, and this can lead to low power to detect an impact
and high false impact detection rates. Such errors com-
promise efforts to accurately attribute changes to
impacts, and thus make it tenuous to assign culpability
or test hypotheses about complex system responses to
perturbations. However, strategic site placement,
accounting for serial autocorrelations, and analyzing
species, or species groupings, with high informedness
could overcome many limitations in this large data set
from kelp forest communities. Such findings may be use-
ful to other settings. In particular, we hope it stimulates
coordination among similar monitoring programs (as
has been done here through cooperation between the
National Park Service and the U.S. Geological Survey)
to maximize the ability to understand the ecological con-
sequences of catastrophic events such as the Exxon Val-
dez oil spill. Such understanding will not only help to
assign culpability of impacts through informed natural
resource damage assessments should an accident hap-
pen, but will also enable a fuller understanding of
ecosystems and the natural resources that comprise
them.
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SUPPORTING INFORMATION

Additional supporting information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/eap.2304/full

DATA AVAILABILITY

Code is available in Zenodo (Okamoto 2020): https://doi.org/10.5281/zenod0.4265329.
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